Иммунодиагностика: основные диагностикумы и используемые методы. Иммуносенсоры и иммуносорбенты. Иммуномодулирующие агенты (иммуностимуляторы и иммуносупрессоры)
Введение
1 Иммунобиотехнология как один из разделов биотехнологии
2 Иммунодиагностика
2.1 Иммуноферментный анализ
2.2 Методы генного зондирования
2.3 Иммуноэлектрофорез
2.4 Иммуноблоттинг
3 Иммуносенсоры
4 Иммуномоделирующие агенты
4.1 Иммуносупрессоры
4.2 Иммуномодуляторы
Заключение
Список литературы
Иммунодиагностика. Введение
Биотехнология — одна из важнейших современных научных дисциплин, необходимых фармацевту, работающему как в лабораториях и цехах предприятий, выпускающих лекарственные средства, так и в аптеках и контрольных учреждениях. В каждом случае помимо знания общих основ этой науки (и сферы производства) обязательно также глубокое знакомство с теми ее разделами, которые будут наиболее близки профилю работы специалиста.
В общем смысле технология, как правило, связана с производством, целью которого является удовлетворение потребностей человеческого общества. Иногда высказывается мнение, что биотехнология — это осуществление природного процесса в искусственных, созданных человеком условиях. Однако в последнее десятилетие на основе биотехнологических методов в биореакторах (техногенных нишах) воспроизводятся не только природные, но и не протекающие в природе процессы с использованием ферментов (биокатализаторов — бесклеточных ферментных комплексов), одноклеточных и многоклеточных организмов.
Говоря о биотехнологии, нельзя не упомянуть публикацию в 1953 г. первого сообщения о двуспиральной структуре ДНК, ставшего основополагающим для возникновения фундаментальных дисциплин, достижения которых реализуются в современной биотехнологии. К таким фундаментальным дисциплинам относится и иммунобиотехнология.
Иммунобиотехнология — это раздел современной биотехнологии, представленной как научными достижениями, так и динамично развивающимся технологическим производством диагностических, профилактических и лекарственных средств с применением в качестве действующего начала разных агентов и процессов иммунной системы.
1 Иммунодиагностика. Иммунобиотехнология как один из разделов биотехнологии.
Известно, что человек обладает иммунной системой для защиты от воздействия внешних неблагоприятных факторов, биологически активных агентов. В качестве таких агентов выступают клетки микроорганизмов, вирусы, белки, нуклеиновые кислоты, антибиотики, пестициды, объединенные под общим названием антигенов. Понятие «антиген» является общим, так как обозначает определенную химическую структуру, против которой могут быть получены антитела.
На самом деле антитела образуются не против всей молекулы белка или бактериальной клетки, а только к небольшим участкам на их поверхности, получившим название антигенных детерминант (эпитопов). Например, в случае белковых молекул антигенными детерминантами являются участки поверхности, содержащие всего около пяти аминокислотных остатков. В случае бактериальных клеток в качестве антигенных детерминант часто выступают короткие цепочки из трех—пяти остатков сахаров, образующих стенку бактерий.
Что касается низкомолекулярных соединений, например некоторых лекарств, то сами по себе они не могут вызывать образование антител. Их называют гаптенами. Однако после присоединения гаптенов к поверхности какой-либо макромолекулы организм начинает вырабатывать антитела. Причем даже малые размеры гаптена по отношению к объему полости активного центра антитела не являются препятствием для образования высокоспецифических антител, хотя гаптен в этом случае связывается лишь с частью специфических участков активного центра антитела. В качестве примера можно привести молекулы двух гормонов — тироксина и тиронина, структура которых отличается всего лишь одним атомом йода, а вырабатываемые антитела против них разнятся по константам связывания более чем в 1 ООО раз.
Антигены внешней среды поступают в организм человека с воздухом, водой, пишей, через слизистые и кожные покровы. Часть антигенов может попадать к человеку в виде вакцин и иммуномодулирующих лекарственных средств (агентов). Иммуномодуляторы либо усиливают, либо ослабляют иммунный ответ организма, поэтому в зависимости от свойств их подразделяют на иммуностимуляторы и иммуносупрессоры. Иммунный ответ — сложный процесс межклеточного взаимодействия лимфоидных клеток разных типов с участием специфических гормонов, в результате чего так называемые В-клетки активно синтезируют специфические антитела против данного антигена. Антитела, однородные по структуре и специфичности, производимые в неограниченных количествах, называются моноклональными антителами.
Способы усиления иммунного ответа по типу воздействия подразделяют на активные и пассивные, последние — на специфические и неспецифические.
К группе активных специфических препаратов можно отнести вакцины, полученные на основе либо рекомбинантных, протективных антигенов, либо живых гибридных носителей. К группе препаратов для образования пассивного иммунитета (неспецифической иммуностимуляции) относят рекомбинантные интерлейкины, интерфероны и другие цитокины.
Вместе с тем существует группа препаратов с иммуносупрессивной активностью, появление которых в клинической практике в 1960-х гг. было связано с необходимостью подавления реакции отторжения тканей при трансплантации органов и лечения аутоиммунных заболеваний.
В современной фармацевтической биотехнологии кроме иммуномодуляторов и иммуносупрессоров значительное место отводится лекарственным и диагностическим препаратам, получаемым на основе медиаторов иммунной системы.
Медиаторы иммунологических процессов, являющиеся в обобщенном виде полипептидными факторами неиммуноглобулиновой природы, называются цитокинами. Белки, синтезируемые лимфоцитами, называют лимфокинами, а синтезируемые макрофагами и моноцитами — монокинами.
Лекарственные вещества, проявляющие высокую активность при тестировании in vitro (обычно в культуре клеток), зачастую оказываются значительно менее эффективными in vivo. Кажущееся снижение их активности объясняется тем, что они не достигают органа или клетки-мишени в нужной концентрации. Увеличение дозы принимаемого препарата не решает проблему, поскольку при этом часто возникают побочные эффекты. Более того, чтобы избежать этих эффектов, многие терапевтические средства заведомо вводят в дозах, не достигающих оптимальных, что дополнительно снижает их эффективность.
Для облегчения доставки лекарственного вещества к месту его действия используют несколько приемов:
- заключают его в липосомы, липидная оболочка которых имеет высокое сродство к нужным органам;
- встраивают гены специфических токсинов в инфильтрующие опухоль лимфоциты, которые высвобождают эти токсины непосредственно в опухоли;
- присоединяют молекулы лекарственных веществ к моноклональным антителам, специфичным по отношению к белкам, находящимся на поверхности строго определенных клеток, например опухолевых;
- используют лекарственные вещества в неактивной форме, переводя их в активное состояние при помощи ферментов.
Чтобы такое превращение происходило только вблизи клетки-мишени, фермент присоединяют к моноклональному антителу, специфичному к поверхностному антигену этой клетки.
В 1975 г. Г. Келер и К. Мильштейн сумели впервые выделить клоны клеток, способные секретировать только один тип молекул антител и в то же время расти в культуре. Эти клоны клеток были получены слиянием антителообразующих и опухолевых клеток — клеток-химер, названных гибридомами, так как, с одной стороны, они наследовали способность к практически неограниченному росту в культуре, а с другой стороны, способность к продукции антител определенной специфичности (моноклональных антител).
Весьма существенно для биотехнолога то, что отобранные клоны могут длительно храниться в замороженном состоянии, поэтому в случае необходимости можно взять определенную дозу такого клона и ввести животному, у которого будет развиваться опухоль, продуцирующая моноклональные антитела заданной специфичности. Вскоре в сыворотке животного будут обнаружены антитела в очень высокой концентрации от 10 до 30 мг/мл. Клетки такого клона можно также выращивать in vitro, а секретируемые ими антитела получать из культуральной жидкости.
Только благодаря использованию моноклональных антител, полученных в результате иммунизации животных лекарствами, стало возможно определение дозы этих лекарств.
С помощью моноклональных антител возможно выделение биологически активных веществ (белков, гормонов, токсинов) из сложных смесей. Например, при использовании иммуноадсорбции для очистки интерферона был получен препарат высочайшей степени очистки (до 99%). Только после одного пассажа через колонку с иммобилизованными моноклональными антителами препарат очищался в 5 ООО раз!
Можно использовать моноклональные антитела и в качестве меток для точной идентификации специализированных клеток, например нейронов. Существует также технология использования моноклональных антител для изучения клеточных мембран, позволяющая выделять мембранные белки в чистом виде и измерять их биологическую активность.
Моноклональные антитела можно использовать как в качестве стандартного реагента для обнаружения определенных молекул на клеточной мембране, так и для разделения популяции клеток, несущих на поверхности разные антигены.
Кроме того, с помощью моноклональных антител можно создавать высокоспецифичные вакцины, особенно против определенных вирусных штаммов и паразитов, Моноклональные антитела способны также к нейтрализации лимфоцитов, ответственных за отторжение трансплантата и аутоантител, образующихся при аутоиммунных заболеваниях (некоторые формы диабета, рассеянный склероз, ревматические болезни). В сочетании с лекарственными средствами они могут значительно усиливать эффективность действия последних на клетки-мишени, позволяя избегать серьезных побочных явлений, весьма обычных, например при химиотерапии рака.
Моноклональные антитела с успехом применяются для дифференциальной диагностики многих инфекционных и неинфекционных заболеваний, а также для стандартизации определения групп крови путем иммунохимического анализа. Именно с помощью моноклональных антител были идентифицированы индивидуальные маркеры многих возбудителей инфекционных заболеваний как вирусной, так и бактериальной природы.
2 Иммунодиагностика.
Патологическое изменение функции какого-либо органа, ткани, группы клеток вызывает отклонение от нормальных показателей в работе других органов, тканей, систем. Наряду с неспецифическим, т. е. свойственным для многих видов патологии проявлением таких сдвигов, в большинстве случаев наблюдаются особые, характерные лишь для данного заболевания изменения внутренней среды организма. При инфекционных заболеваниях — это, прежде всего, появление во внутренней среде организма возбудителя или его продуктов (токсины, антигены и т.д.) и иммунный ответ на возбудитель.
В связи с этим иммунодиагностика инфекционных заболеваний может быть разделена на две части.
Во-первых, это определение изменения функциональной активности различных компонентов иммунной системы, характерных для здорового организма: изменение количества лимфоцитов различных популяций, их соотношения, активности клеток системы мононуклеарных фагоцитов, концентрации иммуноглобулинов и т.п.
Во-вторых, это специфическое распознавание маркеров возбудителя и реагирующих с ним комплементарных структур (прежде всего антител) на основе их взаимодействия с микробными антигенами.
Применение диагностических процедур демонстрирует индивидуальную реакцию иммунной системы пациента на течение инфекционного процесса, позволяет оценить эффективность применяемых методов лечения и прогнозировать исход заболевания. Однако лишь в некоторых случаях эти методы позволяют определить вид инфекционного агента. Известно, что при некоторых паразитарных заболеваниях резко повышен уровень IgЕ в крови.
Наиболее значимыми для специфической диагностики инфекционного процесса стали методы иммунохимического анализа для определения антигенов и антител.
Условно методы иммунохимического анализа можно разделить на четыре большие группы.
- К 1-й группе относятся прямые (непосредственные) методы определения реакции антиген-антитело. Образующийся при этом комплекс антиген-антитело идентифицируется визуально, либо с помощью простых оптических устройств. К таким методам относятся преципитация в растворе, в геле, на полимерной пленке, агглютинация бактериальных клеток, простейших, прямая реакция агглютинации эритроцитов антителами, вирусами.
- Ко 2-й группе относятся реакции пассивной агглютинации, т.е. агглютинации частиц, с поверхностью которых связаны антигены или антитела. Такие препараты и получили название диагностикум. К этим методам относятся реакции пассивной гемагглютинации (РНГА) и непрямой геммагглютинации (РНГА), латексагглютинации, коагглютинации, агглютинации частиц бентонита, желатиновых капсул, частиц сефарозы и др.
- К З-й группе относятся индикаторные методы, основанные на использовании различного рода меток для выявления реакции антиген-антитело. Наиболее распространены иммуноферментный, иммунофлюоресцентный, радиоиммунологический анализ.
- В 4-ю группу можно выделить одно из, бурно развивающихся направлений лабораторного анализа — иммуносенсоры.
Все перечисленные методы применяются не только при диагностике инфекционных и неинфекционных заболеваний человека, но и в ветеринарии, растениеводстве, для контроля загрязнения окружающей среды и т. п.
2.1 Иммунодиагностика. Иммуноферментный анализ
Основной отличительной чертой иммуноферментного анализа (ИФА) является то, что в качестве индикаторной молекулы, которая позволяет следить за иммунным комплексом, используется молекула фермента. В связи с тем, что фермент обладает уникальным свойством модифицировать не одну, как в обычных химических реакциях, а большое число молекул субстрата, т. е. обладает своего рода усиливающим свойством, чувствительность иммуноферментных методик может быть очень высока.
Принципы метода:
- — комплекс антиген — антитело можно выявить, если ввести в состав одного из участников иммунной реакции одну или несколько молекул фермента. Причем эта процедура на промежуточных и финальной стадии не должна изменять иммунные свойства фермент-меченного участника иммунной реакции (удобно выявлять иммунный комплекс, используя способность фермента расщеплять субстрат, который при ферментативной модификации изменяет свой цвет. В этом случае для выявления комплекса антиген — антитело обычно используют спектрофотометрию);
- — иммунный комплекс можно выявлять с помощью иммуноферментного анализа как в растворе, так и при адсорбции на твердом носителе. Различают два принципиально различных типа ИФА — гомогенный и гетерогенный (твердофазный) иммуноферментный анализ.
Гомогенный иммуноферментный анализ (ГИФА) — наиболее простой в методическом отношении вид ИФА. При его постановке один из участников иммунной реакции (обычно это низкомолекулярный антиген) метится (ковалентно пришивается) ферментом и за ходом формирования комплекса антиген-антитело следят, регистрируя изменение активности фермента.
Такое нарушение ферментативной активности может возникать либо за счет пространственного разобщения фермента и субстрата, либо за счет изменений в молекуле фермента, сопровождающих формирование иммунного комплекса. ГИФА имеет ряд существенных преимуществ перед другими иммунохимическими методами.
Во-первых, быстрота анализа (весь анализ с помощью ГИФА, занимает минуты и даже доли минут).
Во-вторых, метод имеет одну стадию и не требует трудоемких и требующих времени этапов промывки. И наконец, в-третьих, метод требует минимальных объемов (8-50 мкл) и количеств биологического или клинического образца. Однако у метода ГИФА имеется один крайне существенный недостаток — на его основе можно создавать диагностические тест-системы только для низкомолекулярных антигенов. Только, в этом случае антитело, взаимодействуя с антигеном, может эффективно модифицировать связанную с этим антигеном молекулу фермента. Именно в связи с этим на основе ГИФА были созданы диагностикумы для выявления только гормонов, пептидов, лекарственных и наркотических веществ и некоторых низкомолекулярных белков.
Гетерогенный (твердофазный) иммуноферментный анализ (ТФИФА или ЕLISА) в последние годы особенно широко используется в биологии и медицине. Как и для других твердофазных методов анализа, характерной особенностью ТФИФА является то, что в процессе проведения анализа один из участников реакции антиген — антитело иммобилизуется на твердом носителе. Эту фиксацию антигена или антител можно осуществлять либо путем их ковалентной «пришивки» к полимерной или стеклянной матрице, либо путем их физической адсорбции на твердом носителе за счет достаточно прочных сил электростатического и ван-дер-ваальсового взаимодействия. Идея иммобилизации иммунного комплекса важна для анализа многокомпонентных смесей макромолекул, когда в системе должны оставаться только те компоненты смеси, которые обладают нужными иммунохимическими свойствами. Именно твердофазные методики позволяют избавиться от балластных, не вошедших в иммунный комплекс антигенов простой промывкой.
Для обнаружения в биологических и клинических образцах бактериальных и вирусных антигенов особенно часто применяется так называемый сэндвич-метод или модифицированный сэндвич-метод. При использовании этих методик на твердую подложку (обычно полистирол) сорбируются последовательно первичные антитела, выявляемый антиген и вторичные антитела. В случае двойного сэндвич-метода ферментная метка вводится в состав вторичных антител, в случае модифицированного двойного сэндвич-метода вторичные антитела (немеченые) «проявляются» антивидовыми меченными ферментом иммуноглобулинами. Особая популярность последней разновидности ТФИФА объясняется тем, что для выполнения методики нет необходимости синтезировать специфические для каждого конкретного антигена конъюгаты (меченные ферментом антитела).
Большое значение для успешного использования ТФИФА в микробиологических и вирусологических исследованиях имеет правильная интерпретация полученных результатов. Это особенно важно при использовании клинического материала, когда понятия «контроль» и «опыт» часто определяются субъективно. Для тестирования положительных проб вначале ставят 6-8 тестов на образцах, взятых от заведомо здоровых людей и определяют среднюю оптическую плотность контроля и стандартное отклонение при естественном разбросе данных за счет различных методических погрешностей. Проба обычно считается положительной, если отклонение ее оптической плотности от контроля в 3 раза превышает стандартное.
2.2 Иммунодиагностика. Методы генного зондирования
В области диагностики возникло и бурно развивается направление по определению специфических нуклеотидных последовательностей ДНК и РНК, так называемое генное зондирование. В основе подобных методик лежит способность нуклеиновых кислот к гибридизации — образованию двухцепочных структур за счет взаимодействия комплементарных нуклеотидов (А-Т, Г-Ц). Для определения искомой последовательности ДНК (или РНК) специально создается, так называемый, зонд полинуклеотид с определенной последовательностью оснований. В его состав вводят специальную метку, позволяющую идентифицировать образование комплекса. Схема реакции представлена на рисунке.
Рис. Схема реакции генного зондирования для обнаружения в образцах ДНК или РНК микроба специфическим меченым зондом.
Хотя генное зондирование нельзя отнести к методам иммунохимического анализа, основной его принцип (взаимодействие комплементарных структур) методически реализуется теми же способами, что и индикаторные методы иммунодиагностики. Кроме того, методы генного зондирования позволяют восполнить информацию о таких инфекционных агентах, как например, вирусы, встроенные в геном, «молчащие» гены.
Для проведения анализа ДНК пробу подвергают денатурации с целью получения одноцепочных структур, с которыми и реагируют молекулы ДНК- или РНК-зонда. Для приготовления зондов используют либо различные участки ДНК (или РНК), выделенные из естественного источника (например, того или иного микроорганизма), либо химически синтезированные олигонуклеотиды.
В качестве метки используют те же индикаторы, что и при различных видах иммунохимического анализа: радиоактивные изотопы, флуоресцеины, биотоп (с дальнейшим проявлением комплексом авидин-фермент) и т. п.
Порядок проведения анализа определяется свойствами имеющегося зонда. В исследовательских лабораториях используют ДНК-зонды, приготовленные самостоятельно и меченые, как правило, радиоактивным фосфором (32Р). В настоящее время все чаще применяются коммерческие наборы, содержащие все необходимые ингредиенты.
В большинстве случаев процедуру проведения анализа можно разделить на следующие стадии: подготовка образцов (в том числе экстракция и денатурация ДНК), фиксация пробы на носителе (чаще всего — полимерный мембранный фильтр), предгибридизация, собственно гибридизация, отмывание несвязавшихся продуктов, детекция. При отсутствии стандартного препарата ДНК- или РНК-зонда предварительно проводится его получение и введение метки.
Денатурация ДНК, т. е. переход ее в одноцепочную форму, происходит при обработке щелочью. Затем образец нуклеиновых кислот фиксируют на носителе — нитроцеллюлезной или нейлоновой мембране, обычно путем инкубации от 10 мин до 4 час при 80 С0 в вакууме. Далее, в процессе предгибридизации достигается инактивация свободных мест связывания для уменьшения неспецифического взаимодействия зонда с мембраной. Процесс гибридизации занимает от 2 до 20 ч, в зависимости от концентрации ДНК в образце, концентрации используемого зонда и его размера.
После окончания гибридизации и отмывания несвязавшихся продуктов проводится детекция образовавшегося комплекса.
Методы, связанные с использованием генного зондирования безусловно, будут более широко внедряться в практику диагностики инфекционных заболеваний по мере их упрощения и удешевления.
2.3 Иммунодиагностика. Иммуноэлектрофорез
Иммуноэлектрофорез помогает идентифицировать антигены по электрофоретической подвижности, особенно в том случае, когда в образце присутствуют и другие антигены. С помощью данного метода в клинической иммунологии полуколичественно определяют концентрацию иммуноглобулинов и идентифицируют миеломные белки.
На основе сочетания электрофореза с иммуноперципитацией разработано несколько удачных методов, в каждом из которых перемещение антигена в электрическом поле приводит к его контакту с антителами. Встречный иммуноэлектрофорез может применяться для определения антигенов, мигрирующих в агаре к положительно заряженному электроду. Данный метод занимает мало времени и высоко чувствителен. Его применяют для идентификации антигенов вируса гепатита В и соответствующих антител, антител к ДНК при системной красной волчанке, аутоантител к растворимым ядерным антигенам при коллагенозах, а также антител (преципитинов) к Aspergillus при аллергическом бронхолегочном аспергиллезе. Ракетный электрофорез-это количественный метод, предусматривающий внесение антигена в гель, содержащий антитела. Линия преципитации имеет форму ракеты, длина которой определяется концентрацией антигена. Как и встречный электрофорез, это — быстрый метод, но и здесь антиген должен перемещаться к положительно заряженному электроду. Таким образом, ракетный электрофорез подходит для белков, например альбумина, трансферрина и церулоплазмина.
2.4 Иммунодиагностика. Иммуноблоттинг
После разделения сложной смеси белков методом электрофореза в полиакриламидном или агарозном геле их можно перенести из геля на
Рис. Схема иммуноблотинга
микропористую нитроцеллюлозную мембрану. Далее неспецифически связанные с мембраной антигены могут быть идентифицированы с помощью меченых антител. Данный метод получил широкое распространение. Например, он используется для идентификации компонентов нейрофиламентов, которые предварительно разделяют в полиакриламидном геле в присутствии додецилсульфата натрия (ДСН).
Рис. Пример иммуноблотинга
Разумеется, если антиген необратимо денатурируется додецилсульфатом натрия ДСН, то такая методика использоваться не может.
Таблица: Возможности использования коммерческих препаратов для различных методов лабораторной диагностики при инфекциях у человека.
Метод |
Определяемый компонент |
Инфекционная патология(возбудитель) |
Прямая агглютинация |
Антигены, антитела |
Кишечные инфекции (Sallmonella, Shigella, Escherichia, Proteus, Brucella),Респираторная инфекция (B. Pertussis, Legionella, N.meningitidis, S.Pneumoniae, Staphylococcus, Streptococcus), Listeria monocytogenes, T.gondii |
Торможение прямой гемагглютинации |
Антитела |
Вирусы ЕСНО-коксаки, гриппа, парагриппа, паротита, кори, реовирусы |
Нейтрализация |
Антитела |
М.Pneumoniae, Вирусы ЕСНО-коксаки, аденовирусы, гриппа, парагриппа, полимиелита, реовирусы |
Перциптация |
Антигены, антитела |
Гистоплазмоз, кокцидиоидомикоз, бластомикоз, аспергиллез. кандидоз, сифилис |
Коааглютинация |
Антигены |
Кишечные инфекции (Shigella, энтеротоксикогенные E. Coli), менингит (N.meningitidis, S.Pneumoniae, H. Influenzae) |
Латексагглютинация |
Антигены, антитела |
менингит (N.meningitidis, S.Pneumoniae, Streptococcus, H.Influenzae ), E. Coli, S.aureus, Cl. Perfingens, эхинококкоз, мононуклеоз, краснуха, криптококкоз, цитомегаловирус. |
РПГА |
Антитела |
Yersinia, Staphylococcus, мононуклеоз, краснуха, трипаносомоз, шистомоз, лейшманиоз, эхинококкоз, амебная дизентерия |
Реакция связывания комплемента |
Антитела |
Большинство патогенных вирусов, бактерий, Chlamidia, М.Pneumoniae, рикетсии, Р.Capsulatum, B.dermatitidis, C.immitis, Aspergillus |
Иммунфлуоресценция |
Антигены, антитела |
Aденовирусы, Вирусы ЕСНО-коксаки, цитомегаловирус, вирус простого герпеса, гриппа, краснухи, гепатита В, М.Pneumoniae, Большинство патогенных бактерий, E.Histolytica |
Иммуноферментный анализ |
Антигены, антитела |
Большинство патогенных бактерий, вирусов, грибы, простейшие |
Генные зонды |
Нуклеиновые кислоты |
М.Pneumoniae, L.Pneumoniae, Aденовирусы, Вирусы ЕСНО-коксаки, гепатита A и В, вирус простого герпеса, ВИЧ-1, ВИЧ-2, папиломавирус |
3 Иммунодиагностика. Иммуносенсоры
Принцип методов, основанных на иммуносенсорной технологии, заключается в изменении физико-химических свойств мембраны или другого носителя, связанного с антителами или антигенами. Уменьшение мембранного потенциала, изменение оптических или химических свойств среды, прилегающей к носителю, выявляются с помощью специального электрода или оптического устройства и выражаются в виде электрического сигнала.
Существует два основных типа иммуносенсоров, различающихся по особенностям определения реакции антиген — антитело.
- 1 тип — так называемый немеченый иммуносенсор. Такое устройство состоит из металлического электрода для потенциометрии, покрытого полупроницаемой полимерной мембраной с иммобилизованными на ней молекулами антител (или антигена). В результате реакции с искомым комплементарным веществом образуются иммунные комплексы на поверхности мембраны. Это приводит к изменению заряда мембраны и ее поверхностного потенциала. Изменение разности потенциалов и определяется электродом.
- 2 тип — меченый иммуносенсор. В этом случае на мембране также иммобилизуются антитела или антиген, но реакция определяется по изменению проводимости (амперметрия). Для этого используют кислородный электрод, реагирующий на изменение концентрации О2 после реакции антител с антигеном, меченым ферментом (например, каталазой). Конкуренция искомого антигена с известным количеством меченого конъюгата дает изменение проводимости раствора в области мембраны, что реализуется в виде электрического сигнала на выходе электрода. В другой модификации результат цветной ферментативной реакции может быть определен и с помощью оптического устройства.
Особенностью иммуносенсоров, отличающей их от других систем иммунохимической диагностики, является то, что информация о возникновении иммунного комплекса непосредственно реализуется в виде физического сигнала — изменения разницы потенциалов, оптической плотности, силы тока и т. п.
Одним из первых применений иммуносенсоров было измерение количества антител при сифилисе. Для этого на полупроницаемой мембране электрода связывали антигены трепонемы и инкубировали его в растворе сыворотки крови. Изменения разницы потенциалов наблюдали вплоть до разведения положительной контрольной сыворотки 1:800, причем, увеличение сигнала соответствовало повышению концентрации антител. Важно то, что после отмывания иммуносенсор можно использовать вновь. Аналогичный подход был применен для определения антител другой специфичности (к групповым антигенам крови) и альбумина. Более сложное строение иммуносенсора увеличивает чувствительность анализа. Так при использовании меченого иммуносенсора достигается чувствительность до 0,1 нг белка/мл.
Хотя в настоящее время отсутствуют коммерческие образцы иммуносенсоров для диагностики инфекционных заболеваний, следует обратить внимание на основные этапы использования подобных устройств.
Опыт использования аналогичных систем для определения глюкозы в крови, гормонов, низкомолекулярных веществ позволяет разделить процесс анализа на три этапа:
- 1 — подготовка образца для анализа
Некоторые типы иммуносенсоров способны взаимодействовать непосредственно с биологическим материалом. Однако чаще всего используется предварительно отделенная центрифугированием плазма или сыворотка крови, разведенная специальным раствором. - 2 — проведение аналитической процедуры
Помещая каплю раствора на микроэлектрод, или опуская электрод в исследуемый образец, создается контакт реагентов. Время достижения равновесия от нескольких секунд (для низкомолекулярных веществ) до нескольких минут (для высокомолекулярных агентов, антигенов, клеток). Результат определяется по изменению сигнала после реакции. Результат выражается в систематических единицах (милливольт, миллиампер). - 3 — регенерация иммуносенсора
Для повторного или многократного использования иммуносенсора необходимо освободить его рабочую поверхность от веществ, активно или пассивно сорбированных в ходе анализа. Наиболее простой способ регенерации состоит в интенсивном последовательном промывании иммуносенсора раствором с кислым значением рН и буферным раствором с высокой ионной силой. Для некоторых типов иммуносенсоров до сих пор не найдено оптимальных условий регенерации, не снижающих их чувствительность. В этих случаях используют сменные одноразовые мембранные элементы.
В ближайшее время будут созданы надежные портативные иммуносенсоры для диагностики наиболее распространенных инфекционных заболеваний, как это сделано уже для анализаторов глюкозы.
4 Иммунодиагностика. Иммуномоделирующие агенты
К этой группе иммунобиологических препаратов относятся иммуномодулирующие лекарственные средства химической или биологической природы, способные модулировать, т. е. стимулировать, угнетать или регулировать иммунные реакции в результате воздействия на активность иммунокомпетентных клеток, регуляторные механизмы, процесс образования иммунных факторов или другие иммунные процессы. Иммуномодуляторы по происхождению делят на гомологичные и гетерологичные. К гомологичным относятся иммуномодуляторы, вырабатываемые в организме, так называемые эндогенные иммуномодуляторы (цитокины, к которым принадлежат интерфероны, интерлейкины, фактор некроза опухолей, миелопептиды, вещества вилочковой железы и др.).
К гетерологичным иммуномодуляторам относится группа химических веществ, оказывающих влияние на иммунную систему. Это левамизол (декарис), регулирующий созревание Т-лимфоцитов и гранулоцитов; левакадин (2-карбамоплазипирид), стимулирующий Т-хелперы и ингибирующий Т-супрессоры; циклоспорин А — иммунодепрессант. Эти препараты используют для подавления трансплантационного иммунитета при пересадках органов и др. Имеются иммуномодуляторы, преимущественно влияющие на систему мононуклеарных фагоцитов (нуклеинат натрия), а также препараты главным образом микробного происхождения (полисахариды или липополисахариды, продигиозан, пирогенал, мурамилдипептид и др.), которые повышают антиинфекционную резистентность. В качестве иммуномодуляторов применяют также антилимфоцитарную сыворотку и иммуноглобулины (пентаглобин, интраглобин).
В зависимости от оказываемого эффекта иммуномодуляторы делят на две группы: иммуностимуляторы, иммунодепрессанты.
Иммуномодуляторы с учетом механизма их действия назначают при первичных и вторичных иммунодефицитах, злокачественных новообразованиях, аутоиммунных заболеваниях и других иммунопатологических состояниях.
4.1 Иммунодиагностика. Иммуносупрессоры
Иммунодепрессантами (иммуносупрессорами) называют препараты, подавляющие реакции иммунитета вследствие обратимого угнетения функций клеток иммунной системы.
Классификация:
- 1 Стероиды (кортазон, гидрокортизон и др.)
- 2 Антиметаболиты:
антагонисты пурина (меркаптопуриназагноприн)
антагонисты фолиевой кислоты (метотрексаг) - 3 Алкилирующие соединения (циклофосфан, циклофосфамид, мидеран, хлорбутин)
- 4 Алкалоиды (винкристин)
- 5 Антибиотики (актиномицин-С,-Д, хлорамфеникол, циклоспорин А)
Практическое значение иммунодепрессивной терапии состоит, прежде всего в том, что она позволила успешно осуществить пересадку органов и тканей. Однако, применение иммунодепрессантов в лечении аутоиммунных заболеваний оказалось до настоящего времени недостаточно эффективным, что объясняется неспецифической активностью и высокой токсичностью этих препаратов. Осложнения, вызываемые иммунодепрессантами, являются чрезвычайно опасными и должны учитываться всякий раз при решении вопроса о целесообразности проведения иммунодепрессивной терапии.
Побочные действия:
— в ранние сроки
1 нарушение функции костного мозга
2 нарушение функции желудочно-кишечного тракта
3 предрасположенность к инфекциям
4 аллергические реакции
— острого периода
1 возможное канцерогенное действие
2 влияние на репродуктивную функцию и тератогенный эффект
3 задержка роста у детей
4 другие осложнения: фиброз легких, синдром гиперпигментации, выпадение волос, гемморагические циститы.
4.2 Иммунодиагностика. Иммуномодуляторы.
К иммуномодуляторам, или иммунокорригирующим средствам, относят препараты химической или биологической природы, способные модулировать (стимулировать или угнетать) реакции иммунитета.
Классификация
- 1. Иммуномодуляторы бактериального происхождения.
Главной мишенью служат клетки моноцитарно-макрофагальной системы, естественной задачей которых является элиминация микробов из организма. Усиливают функциональную активность этих клеток. Параллельно с этим происходит и активация цитотоксической функции макрофагов, что проявляется их способностью разрушать in vitro опухолевые клетки. (Рибомупил, Паспат) - 2. Иммуномодуляторы растительного происхождения.
Общетонизирующие препараты элеутерококка, лимонника, женьшеня, родиолы розовой. Все они оказывают однонаправленное адаптагенное действие на организм. Мобилизируют адаптогенные реакции, тем самым повышают резистентность организма к разнообразным воздействиям химической и физической природы, а также к некоторым микроорганизмам. - 3. Иммуномодуляторы эндогенного происхождения.
Олигопептиды, активируют иммунную систему, в результате чего происходит стимуляция либо врожденного, либо приобретенного иммунитета. В первом случае мишениями являются макрофаги и естественные киллеры, а во втором — Т- и В-лимфоциты.
— Цитокины (интерфероны, интерлейкины)
— Иммуномодулятороры костномозгового происхождения
— Иммуноглобулины - 4. Синтетические препараты
- 5. Ферментные препараты
Представляют собой стабильные смеси энзимов растительного и животного происхождения. (Вобэнзим).
Заключение
Методы иммунного анализа широко вошли в медицинскую практику. Во всех областях современной медицины используется иммунный анализ, преимущественно, с диагностической и аналитической целями. Особенно важно, что они дают возможность идентифицировать биологические компоненты (гормоны, ферменты, нейропептиды, продукты иммунной системы, антигены и т.д.) в низких и очень низких концентрациях. Все продукты, против которых возможно получение антител, выявляются этими методами.
Список литературы.
1. А.А. Кишкун «Иммунологические исследования и методы диагностики инфекционных заболеваний в клинической практике» Медицинское информационное агентство, 2009 г.
2. И.А. Кондратьева «Практикум по иммунологии. Учебное пособие для ВУЗов» Академия, 2004 г.
3. Р. М. Хаитов «Иммунология» Медицина, 2000 г.
4. Руководство «Иммунология инфекционного процесса» Москва, 1994 г.
5. Е.В. Никитина, С.Н. Киямова, О.А. Решетник. «Микробиология – полный курс» М.: Гиорд, 2009 г.
6. И.Д. Столярова «Иммунодиагностика и иммунокоррекция в клинической практике», Сотис, 1999 г.
7. Ю.О. Сазыкин «Биотехнология: учебное пособие для студентов высших учебных заведений» 3-е изд., стер. – М.: Издательский центр «Академия», 2008 г.