4

Энергетика химических процессов. Энтальпия, законы термодинамики

Энергетика химических процессов

Общая химия. Учебное пособие — Таирова А.Р., Кузнецов А.И. — 2005

  • 5.1. Общие понятия
  • 5.2. Внутренняя энергия. Первый закон термодинамики
  • 5.3. Энтальпия системы. Тепловые эффекты химических реакций
  • 5.4. Термохимические расчеты
  • 5.5. Химическое сродство. Энтропия химических реакций. Энергия Гиббса
  • 5.6. Второй и третий законы термодинамики

Глава 5 . Энергетика химических процессов

Науку о взаимных превращениях различных видов энергии называют термодинамикой. Термодинамика устанавливает законы этих превращений, а также направление самопроизвольного тече­ния различных процессов в данных условиях.

5.1. Общие понятия. При протекании химических реакций изменяет­ся энергетическое состояние системы, в которой идет эта реакция. Состояние системы характеризуется термодинамическими парамет­рами (р, Т, с и др.). При изменении параметров меняется и состояние системы. В термодинамике свойст­ва системы рассматриваются при ее равновесном состоянии. Термодинамическое состояние системы называют равновесным в том случае, когда его термодинамические параметры одинаковы во всех точках системы и не изменяются самопроизвольно (без затраты работы) во времени. Термодинамика изучает переходы системы из одного состояния в другое. Но переходы должны осуществляться при термодинамическом равновесии с окружающей средой, т.е. очень медленно, а в идеале — бесконечно медленно. При этом могут изменяться все параметры состояния системы, либо некоторые параметры остаются без изменения. Если процессы перехода системы происходят при постоянстве каких-то параметров системы, то они называются:

а) изобарическими = const);

б) изохорическими (Т= const);

в) изотермическими = const);

г) изобарно-изотермическими (р,T — const) и т.д.

Термодинамика изучает возможность или невозможность самопроизвольного перехода системы из одного состояния в другое и энергетические эффекты этих переходов. Скорость и механизм про­цессов перехода — это области химической кинетики.

5.2. Внутренняя энергия. Первый закон термодинамики. При химических реакциях происходят глубокие качественные изменения в системе, рвутся связи в исходных веществах и возникают новые связи в конечных продуктах. Эти изменения сопровождаются поглощением или выделением энергии. В большинстве случаев этой энергией является теплота. Раздел термодинамики, изучающий тепловые эффекты химических реакций, называют термохимией. Реакции, которые сопровож­даются выделением теплоты, называют экзотермическими, а те, которые сопровождаются поглощением теплоты, — эндотер­мическими. Теплота реакции является, таким образом, мерой изменения свойств системы, и знание ее может иметь большое значение при определении условий протекания той или иной реакции.

При любом процессе соблюдается закон сохранения энергии как проявление более общего закона природы — закона сохранения материи. Теплота Q, поглощенная системой, идет на изменение ее внутренней энергии и на совершение работы А:

Q = ∆U + A

Количественное соотношение между изменением внутренней энергии, теплотой и работой устанавливает первый закон термодинамики:

Q = ∆U + W

Уравнение означает, что теплота, подведенная к системе, расходуется на приращение внутренней энергии системы и на работу системы над окружающей средой.

Внутренняя энергия системы U — это общий ее запас, включающий энергию поступательного и вращательного движений молекул, энергию внутримолекулярных колебаний атомов и атомных групп, энергию движения электронов, внутриядерную энергию и т.д. Внутренняя энергия — полная энергия системы без потенциальной энергии, обусловленной положением системы в пространстве, и без кинетической энергии системы как целого. Абсолютное значение внутренней энергии U веществ неизвестно, так как нельзя привести систему в состояние, лишенное энергии. Внутренняя энергия, как и любой вид энергии, является функцией состояния, т.е. ее изменение одно­значно определяется начальным и конечным состояниями системы и не зависит от пути перехода, по которому протекает процесс:

U=U2-U1,

где: U — изменение внутренней энергии системы при переходе из начального состояния U1 в конечное U2. Если U2 > U1, то U> 0.

Если U2< U1, то U< 0.

5.3. Энтальпия системы. Тепловые эффекты химических реакций. Теплота Q и работа A функциями состояния не являются, ибо они служат формами передачи энергии и связаны с процессом, а не с состоянием системы. При химических реакциях А — это работа против внешнего давления, т.е. в первом приближении

А = рV,

где V — изменение объема системы (V2 – V1).

Так как большинство химических реакций проходит при постоянном давлении, то для изобарно-изотермического процесса (р = const, Т= const) теплота Qp будет равна:

Qp = ∆U + p∆V,

Qp= (U2 – U1) + p(V2 – V1)

Qp = (U2 + pV2) – (U1 + pV1)

Сумму U+ pV обозначим через Н, тогда

Qp = H2 – H1 = ∆H

Величину Н называют энтальпией. Таким образом, теплота при р=const и Т=const приобретает свойство функции состояния и не зависит от пути, по которому протекает процесс. Отсюда теплота реакции Qp в изобарно-изотермическом процессе равна изменению энтальпии системы Н (если единственным видом работы является работа расширения):

Qp = ∆H

Энтальпия, как и внутренняя энергия, является функцией состояния: ее изменение (H) определяется только начальным и конечным состояниями системы и не зависит от пути перехода. Нетрудно видеть, что теплота реакции в изохорно-изотермическом процессе (V= const; Т = const), при котором V=0, равна изменению внутренней энергии системы:

Qv = ∆U

Теплоты химических процессов, протекающих при р, Т=const и V, Т=const, называют тепловыми эффектами.

При экзотермических реакциях энтальпия системы умень­шается и Н < 0 (Н2 < H1), а при эндотермических энтальпия системы увеличивается и Н > 0 (Н2 > Н1). В дальнейшем теп­ловые эффекты всюду выражаются через H.

5.4. Термохимические расчеты. Термохимические расчеты основаны на законе Гесса, позволяющее рассчитать энтальпию химической реакции: тепловой эффект реакции зависит только от природы и физического состояния исходных веществ и конечных продуктов, но не зависит от пути перехода.

Часто в термохимических расчетах применяют следствие из закона Гесса: тепловой эффект реакции (Нx.p.) равен сумме теплот образования Нобр продуктов реакции за вычетом суммы теплот образования исходных веществ с учетом коэффициентов перед формулами этих веществ в уравнении реакции:

∆Hx.p. = ∑∆Hобрпрод — ∑∆Hобрисх (1)

Пример 1. При взаимодействии кристаллов хлорида фосфора (V) с парами воды образуется жидкий РОС13 и хлороводород. Реакция сопровождается выделением 111,4 кДж теплоты. Напи­шите термохимическое уравнение этой реакции.

Решение. Уравнения реакций, в которых около символов химических соединений указываются их агрегатные состояния или кристаллическая модификация, а также числовое значение тепло­вых эффектов, называют термохимическими. В термохимических уравнениях, если это специально не оговорено, указываются значения тепловых эффектов при постоянном давлении Qp, равные изменению энтальпии системы Н. Значение Н приводят обычно в правой части уравнения, отделяя его запятой или точкой с запятой. Приняты следующие сокращенные обозначения агрегат­ного состояния вещества: г — газообразное, ж — жидкое, к — крис­таллическое. Эти символы опускаются, если агрегатное состояние веществ очевидно.

Если в результате реакции выделяется теплота, то Н < 0. Учитывая сказанное, составляем термохимическое уравнение данной в примере реакции:

PCl5(к) + H2O(г) = POCl3(ж) + 2HCl(г); ∆Hx.p.= -111,4 кДж

Таблица 15.

Стандартные теплоты (энтальпии) образования

некоторых веществ

Вещество Состояние кДж/моль Вещество Состояние кДж/моль
С2Н2 г +226,75 СО г -110,52
CS2 г +115,28 СН3ОН г -201,17
NO г +90,37 С2Н5 г -235,31
С6Н6 г +82,93 H2O г -241,83
С2Н4 г +52,28 Н2О ж -285,84
H2S г -20,15 NH4C1 к -315,39
3 г -46,19 СО2 г -393,51
СН4 г -74,85 2О3 к -822,10
С2Н6 г -84,67 TiO2 к -943,90
НС1 г -92,31 Са(ОН)2 к -986,50
А12O3 к -1669,80

Пример 2. Реакция горения этана выражается уравнением:

С2Н6(г) + 31/2О2= 2СО2(г)+3Н2О(ж); ∆Hх.р.= -1559,87 кДж

Вычислите теплоту образования этана, если известны теплоты образования СO2(г) и Н2O(ж) (см. табл. 15).

Решение. Теплотой образования (энтальпией) данного соединения называют тепловой эффект реакции образования 1 моль этого соединения из простых веществ, взятых в их устойчивом состоянии при данных условиях.

Обычно теплоту образования относят к стандартному состоянию, т.е. 25° С (298 К) и 1,013105 Па и обозначают через.Так как тепловой эффект с температурой изменяется незначительно, то в дальнейшем индексы опускаются и тепловой эффект обозначается через Н. Следовательно, нужно вычислить тепловой эффект реакции, термохимическое уравнение которой имеет вид

2С(графит)+3Н2(г) = С2Н6(г); ∆H = ?

исходя из следующих данных:

а) С2Н6(г) + 31/2О2(г)=2СО2(г)+3Н2О(ж); ∆H =-1559,87 кДж

б) 2С(графит)+О2(г)= СО2(г); ∆H =-393,51 кДж

в) Н2(г)+ 1/2О22О(ж); ∆H =-285,84 кДж

На основании закона Гесса с термохимическими уравнениями можно оперировать так же, как и с алгебраическими. Для получения искомого результата следует уравнение (б) умножить на 2, уравнение (в) — на 3, а затем сумму этих уравнений вычитают из уравнения (а):

С2Н6 + 31/2О2-2С-2О2-3Н23/2О2=2СО2+3Н2О-2СО2-3Н2О

∆H =-1559,87-2(-393,51)-3(-285,84)= +84,67 кДж;

∆H =-1559,87+787,02+857,52;

С2Н6=2С+3Н2; ∆H = +84,67 кДж

Так как теплота образования равна теплоте разложения с обратным знаком, то .

К тому же результату придем, если для решения задачи применить вывод из закона Гесса:

∆Hх.р. =2∆Hсо2+3∆Hн2о-∆Hс2н6-31/2∆Hо2

Учитывая, что теплоты образования простых веществ условно приняты равными нулю

∆Hс2н6=2∆Hсо2+3∆Hн2о-∆Hх.р.

∆Hс2н6=2(-393,51)+3(-258,84)+1559,87=-84,67;

∆Hобрс2н6(г)=-84,67 кДж

Пример 3. Реакция горения этилового спирта выражается термохимическим уравнением

С2Н5ОН(ж)+3О2(г)=2СО2(г)+3Н2О(ж); ∆H=?

Вычислите тепловой эффект реакции, если известно, что молярная теплота парообразования С2Н5OН(ж) равна +42,36 кДж, а теплоты образования С2Н5OН(г), СO2(г), Н2O(ж) см. табл. 15.

Решение. Для определения Н реакции необходимо знать теплоту образования С2Н5OН(ж). Последнюю находим из данных:

С2Н5ОН(ж) = С2Н5ОН(г); ∆H = + 42,36 кДж

+42,36 = — 235,31- ∆Hс2н5он (ж);

∆Hс2н5он (ж) = — 235,31-42,36 = -277,67 кДж

Вычисляем H реакции, применяя следствие из закона Гесса:

∆Hх.р.=2(-393,51)+3(-285,84)+277,67=-1366,87 кДж

5.5. Химическое сродство. Энтропия химических реакций. Энергия Гиббса. Самопроизвольно могут протекать реакции, сопровождаю­щиеся не только выделением, но и поглощением теплоты.

Реакция, идущая при данной температуре с выделением теплоты, при другой температуре проходит с поглощением теплоты. Здесь проявляется диалектический закон единства и борьбы противоположностей. С одной стороны, система стремится к упорядочению (агрегации), к уменьшению Н; с другой стороны, система стремится к беспорядку (дезагрегации). Первая тенденция растет с понижением, а вторая — с повышением температуры. Тенденцию к беспорядку характеризует величина, которую называют энтропией.

Энтропия S, так же как внутренняя энергия U, энтальпия Н, объем V и др., является свойством вещества, пропорциональным его количеству. S, U, H, V обладают аддитивными свойствами, т.е. при соприкосновении системы суммируются. Энтропия отражает движение частиц вещества и является мерой неупорядоченности системы. Она возрастает с увеличением движения частиц: при нагревании, испарении, плавлении, расширении газа, при ослаблении или разрыве связей между атомами и т.п. Процессы, связанные с упорядоченностью системы: конденсация, кристаллизация, сжатие, упрочнение связей, полимеризация и т.п.— ведут к уменьшению энтропии. Энтропия является функцией состояния, т.е. ее изменение зависит только от начального (S1) и конечного (S2) состояний и не зависит от пути процесса:

Так как энтропия увеличивается с повышением температуры, то можно считать, что мера беспорядка равна TS. Энтропия выражается в Дж/(моль.К).

Таким образом, движущая сила процесса складывается из двух сил: стремления к упорядочению (Н) и стремления к беспорядку (TS). При р = const и Т = const общую движущую силу процесса, которую обозначают G, можно найти из соотношения

∆G=(H2-H1)-(TS2-TS1); ∆G=∆H-T∆S

где: величина G называется изобарно-изотермическим потенци­алом или энергией Гиббса.

Мерой химического сродства является убыль энергии Гиббса (G), которая зависит от природы вещества, его количества и температуры.

Энергия Гиббса является функцией состояния, поэтому

∆Gx.p.=∑ ∆Goбpпрод-∑∆Goбpисх (3)

Самопроизвольно протекающие процессы идут в сторону уменьшения потенциала и, в частности, в сторону уменьшения G. Если G < 0, процесс принципиально осуществим; если G>0, процесс самопроизвольно проходить не может. Чем меньше G, тем сильнее стремление к протеканию данного процесса и тем дальше он от состояния равновесия, при котором G = 0 и H= TS.

Из соотношения G = H – TS видно, что самопроизвольно могут протекать и процессы, для которых H>0 (эндотерми­ческие). Это возможно, когда S>0, но |TS| > |H| и тогда G<0. С другой стороны, экзотермические реакции (H<0) самопроиз­вольно не протекают, если при S<0 окажется, что G>0.

5.6. Второй и третий законы термодинамики. Для систем, которые не обмениваются с окружающей средой ни энергией, ни веществом (изолированные системы), второй закон термодинамики имеет следующую формулировку: в изолированных системах са­мопроизвольно идут только такие процессы, которые сопровождаются возрастанием энтропии: AS > 0.

Второй закон термодинамики имеет статистический характер, т.е.
справедлив лишь для систем, состоящих из очень большого числа
частиц.

Однако, если в системе протекает химическая реакция, то система обменивается энергией с окружающей средой, т.е. не является изоли­рованной. Химические реакции обычно сопровождаются изменением как энтропии, так и энтальпии.

В отличие от других термодинамических функций, можно определить не только изменение, но абсолютное значение энтропии. Это вытекает из высказанного в 1911 г. М. Планком постулата, согласно которому «при абсолютном нуле энтропия идеального кристалла равна нулю». Этот постулат получил название третьего закона термодинамики.

Пример 1. В каком состоянии энтропия 1 моль вещества больше при одинаковой температуре: в кристаллическом или парообразном?

Решение. Энтропия есть мера неупорядоченности состояния вещества. В кристалле частицы (атомы, ионы) расположены упорядоченно и могут находиться лишь в определенных точках пространства, а для газа таких ограничений нет. Объем 1 моль газа гораздо больше объема 1 моль кристаллического вещества; возможность хаотичного движения молекул газа больше. А так как энтропию можно рассматривать как количественную меру хаотичности атомно-молекулярной структуры вещества, то энтропия 1 моль паров вещества больше энтропии 1 моль его кристаллов при одинаковой температуре.

Пример 2. Прямая или обратная реакция будет протекать при стандартных условиях в системе

СН4(г)+СО2 ↔ 2СО(г)+2Н2(г)

Решение. ВычислимΔG0298 прямой реакции. Значения ΔG0298соответствующих веществ приведены в табл. 16. Зная, что ΔG есть функция состояния и что ΔG для простых веществ, находящихся в устойчивых при стандартных условиях агрегатных состояниях, равны нулю, находим ΔG0298процесса:

∆G0298 = 2 (-137,27) +2 (0) — (-50,79-394,38) = +170,63 кДж

То, что ΔG0298> 0, указывает на невозможность самопроиз­вольного протекания прямой реакции при Т = 298К и давлении взятых газов равном 1,013 ∙ 105 Па (760 мм рт. ст. = 1 атм).

Таблица 16

Стандартная энергия Гиббса образования ΔG0298некоторых веществ

Вещество Состояние ΔG0298, кДж/моль Вещество Состояние ΔG0298, кДж/моль
ВаСО3 к -1138,8 FeO к -244,3
СаСО3 к -1128,75 Н2О ж -237,19
3O4 к -1014,2 Н2O г -228,59
ВеСО3 к -944,75 PbO2 к -219,0
СаО к -604,2 СО г -137,27
ВеО к -581,61 СН4 г -50,79
NaF к -541,0 NO2 г +51,84
ВаО к -528,4 NO г +86,69
СО2 г -394,38 C2H2 г +209,20
NaCl к -384,03
ZnO к -318,2

Таблица17

Стандартные абсолютные энтропии ΔS0298 некоторых веществ

Вещество Состояние ΔS0298, Дж/(моль.К) вещество Состояние ΔS0298,Дж/(моль.К)
С Алмаз 2,44 Н2O г 188,72
С Графит 5,69 N2 г 191,49
Fe к 27,2 3 г 192,50
Ti к 30,7 СО г 197,91
S Ромб 31,9 с2H2 г 200,82
TiO2 к 50,3 O2 г 205,03
FeO к 54,0 H2S г 205,64
H2O ж 69,94 NO г 210,20
2О3 к 89,96 CO2 г 213,65
NH4C1 к 94,5 C2H4 г 219,45
СН3ОН ж 126,8 Cl2 г 222,95
Н2 г 130,59 NO2 г 240,46
3O4 к 146,4 РС13 г 311,66
СН4 г 186,19 PCl5 г 352,71
НС1 г 186,68

Пример 3. На основании стандартных теплот образования (см. табл. 15) и абсолютных стандартных энтропий веществ (табл.17) вычислите ΔS0298 реакции, протекающей по уравнению

СО(г)+Н2О(ж)=СО2(г)+Н2(г)

Решение. ∆G0 = ∆H0 — TS0; ∆H и ∆S – функции состояния, поэтому

∆Н0х.р.=∑ ∆Н0прод — ∑ ∆Н0исх ; ∆S0x.p.= ∑S0прод — ∑ S0 исх

∆Н0х.р.=(-393,51+0) – (110,52 – 285,84) = +2,85 кДж

∆S0x.p.=(213,65+130,59)-(197,91+69,94) = +76,39 = 0,07639 кДж/(моль∙К);

∆G0= +2,85 – 298 ∙ 0,07639 = — 19,91 кДж

Пример 4. Реакция восстановления Fе2О3 водородом протекает по уравнению

Fe2O3(к)+3H2(г) = 2Fe(к)+3H2O(г) ; ∆Н=+96,61 кДж

Возможна ли эта реакция при стандартных условиях, если изменение энтропии S=0,1387 кДж/(мольК)? При какой температуре начнется восстановление Fе2О3?

Решение. Вычисляем ∆G0 реакции:

∆G = ∆Н-Т∆S = 96,61 – 298 ∙ 0,1387 = +55,28 кДж

Так как ∆G > 0, то реакция при стандартных условиях невоз­можна; наоборот, при этих условиях идет обратная реакция окисления железа (коррозия). Найдем температуру, при которой∆G=0:

Следовательно, при температуре 696,5 К начнется реакция восстановления Fе2О3 Иногда эту температуру называют температурой начала реакции.

Пример 5. Вычислите ∆H0, ∆S и ∆G0 реакции, протекающей по уравнению

Fe2O3(к) + 3C = 2Fe + 3CO

Возможна ли реакция восстановления Fе2О3 углеродом при 500 и 1000 К?

Решение. ∆H0xp и ∆S0xp находим из соотношений (1) и (2) (см. разделы «Энергетика химических процессов. Термохимические расчеты» и «Химическое сродство»):

∆Н0x.p.= [3(-110,52)+2 ∙ 0] – [- 822,10 + 3 ∙ 0] = -331,56+822,10 = +490,54 кДж

∆S0x.p.=(2 ∙ 27,2+3 ∙ 197,91) – (89,96+3 ∙ 5,69) = 541,1 Дж/(моль ∙ К)

Энергию Гиббса при соответствующих температурах находим из соотношения

Так как ∆G500>0, a ∆G1000<0, то восстановление Fе2О3 возможно при 1000 К и невозможно при 500 К.

 

А Вам помог наш сайт? Мы будем рады если Вы оставите несколько хороших слов о нас.
Категории
Рекомендации
Можно выбрать
Интересное
А знаете ли вы, что нажав сочетание клавиш Ctrl+F - можно воспользоваться поиском по сайту?
X
Copyrights © 2015: FARMF.RU - тесты, лекции, обзоры
Яндекс.Метрика
Рейтинг@Mail.ru