Метод валентных связей. Основные принципы метода

Метод валентных связей (МВС, ВС).

Глава 4. Химическая связь и строение молекул

Для глубокого понимания сущности ковалентной связи, характера распределения электронной плотности в молекуле, принципов построения молекул простых и сложных веществ необходим метод валентных связей (ВС, МВС).

Метод валентных связей описывает механизм возникновения ковалентной связи и базируется на следующих основных принципах:

1. Химическая связь между двумя атомами осуществляется за счет одной или нескольких общих электронных пар.

Оба электрона общей электронной пары удерживаются одновременно двумя ядрами, что энергетически более выгодно, чем нахождение каждого электрона в поле «своего» ядра.

Такая химическая связь является двухцентровой.

2. При образовании общей электронной пары электронные облака перекрываются; область повышенной электронной плотности между ядрами способствует их притяжению. Чем сильнее перекрывание электронных облаков (соотношение R1 и R2), тем прочнее химическая связь (рис. 11).

3. При образовании общей электронной пары спины взаимодействующих электронов должны быть антипараллельны (т.к. электроны с параллельными спинами отталкиваются, и связь не образуется).

Перекрывание электронных облаков

Рис. 11. Перекрывание электронных облаков

4. В образовании общих электронных пар по вышеописанному механизму могут участвовать только неспаренные электроны атомов (иначе говоря – только одноэлектронные облака). Например, изобразим образование молекулы F2 с помощью квантовых ячеек внешнего энергетического уровня (электронная формула атома F: 1s22s22p5):

Спаренные электроны внешнего уровня атома для образования химических связей с другими атомами должны разъединяться (распариваться). Атом перейдет в новое валентное состояние. Затрата энергии на такой процесс возбуждения атома компенсируется энергией, выделяющейся при образовании химической связи (следует помнить, что возможности возбуждения атомов ограничены числом свободных орбиталей в соответствующих энергетических подуровнях).

5. Ковалентная связь обладает свойством насыщаемости, вследствие чего молекулы имеют вполне определенный состав.

Например, при образовании молекулы метана СН4 каждый из четырех неспаренных электронов возбужденного атома углерода соединился с электроном атома водорода, образовались 4 ковалентные связи; больше электронных пар в данном случае образоваться не может, молекулы СН5, СН6 и т. д. не существуют.

(Примечание: взаимодействие валентнонасыщенных соединений между собой возможно с образованием одной или нескольких дополнительных донорно-акцепторных связей по особому механизму).

6. Ковалентная связь направлена в пространстве, что обусловливает пространственную структуру молекул (свойство направленности).

В зависимости от того, какими электронами осуществляются связи – s-, р-, d- или f- электронами, существенно различны энергии связей, длины связей, а также их направление в пространстве.

Электронные облака имеют различную форму, поэтому их взаимное перекрывание осуществляется несколькими способами: различают – (сигма), – (пи) и (дельта)-связи.

Если перекрывание электронных облаков происходит вдоль линии, соединяющей ядра – это -связь; если облака перекрываются вне этой линии, возникают – и -связи. Разновидности связи при комбинировании s-, р- и d-орбиталей показаны на рисунках:

 

Если между атомами возникла одна общая электронная пара (обычно -связь), такая связь называется одинарной, если две и более, то кратной: двойной, тройной.

Например, образование молекулы азота N2 осуществляется тремя общими электронными парами. У каждого атома азота в образовании связей участвует 3 неспаренных р-электрона, направленных в трехмерном пространстве под углом 900 друг к другу и ориентированных соответственно по осям х, у, z (таковы свойства р-подуровня и р-орбиталей, диктуемые магнитным квантовым числом).

Два атома азота, соединяясь в молекулу N2, могут образовать одну -связь (перекрываются облака, ориентированные вдоль оси х) и две -связи (перекрываются облака, ориентированные вдоль осей у и z).

Угловая конфигурация молекулы воды Н2O, определяющая ее высокую полярность и особенности свойств, связана с направлением в пространстве двух химических -связей, в образовании которых участвовали два неспаренных р-электрона атома кислорода и по одному s-электрону атомов водорода.

Исходный угол в 90° между двумя р-орбиталями атома О увеличивается за счет взаимного отталкивания атомов Н, несущих избыток положительного заряда (вследствие смещения электронной плотности от Н к О).

Итак, структура молекул зависит прежде всего от вида и свойств тех орбиталей, которые атомы предоставляют для образования химических связей. Но, помимо этого фактора, на пространственное строение молекул влияет явление гибридизации орбиталей.

Гибридизацией называется образование новых равноценных по форме и энергии орбиталей из орбиталей разного типа. Смешанные, гибридные орбитали на схемах изображают условно:

Из одной s-орбитали и одной р-орбитали образуются две гибридные, смешанные орбитали sp-типа, направленные по отношению друг к другу на 180°

Из одной s-орбитали и двух р-орбиталей образуются три sp2-гибридные орбитали, расположенные в одной плоскости под углом 120° друг к другу:

sp3-гибридизация имеет место, если объединяются одна s-орбиталь и три р-орбитали; образуются четыре sp3-гибридные орбитали, ориентированные уже не в одной плоскости, а в объеме тетраэдра и направленные от центра тетраэдра к его 4 вершинам; валентный угол между двумя химическими связями составляет 109° 28

Возможны более сложные случаи гибридизации с участием d-электронов, (например, sp3d 2 – гибридизация).

Явление гибридизации, т.е. смешения, выравнивания электронной плотности, энергетически выгодно для атома, поскольку у гибридных орбиталей происходит более глубокое перекрывание и образуются более прочные химические связи. Небольшие затраты энергии на возбуждение атома и гибридизацию орбиталей с избытком компенсируются энергией, выделяющейся при возникновении химических связей. Валентные углы диктуются соображениями максимальной симметрии и устойчивости.

Примером sp3-типа гибридизации служит строение молекулы метана СН4. Атом углерода в возбужденном состоянии имеет четыре неспаренных электрона: один s- и три р-электрона. Казалось бы, четыре химические связи, образованные ими с s-электронами четырех атомов водорода, должны быть неравноценными. Однако экспериментально установлено, что все 4 связи в молекуле СН4 совершенно идентичны по длине и энергии, а углы между связями составляют 109°28. Следовательно, в молекуле СН4 имеет место sp3-гибридизация.

Другие примеры гибридизации: BeH2(sp-), BF3 (sp-2), РСl5(sp3d-) и др.

На гибридных орбиталях, как и на обычных орбиталях, может располагаться не только по одному электрону, но и по два. Например, четыре sp3-гибридные орбитали атома кислорода О таковы, что две из них содержат по паре электронов, а две – одному неспаренному электрону. С современных позиций строение молекулы воды рассматривается с учетом гибридизации орбиталей атома О и тетраэдрической структуры молекулы Н2O в целом.

 

Zdravcity RU
А Вам помог наш сайт? Мы будем рады если Вы оставите несколько хороших слов о нас.
Zdravcity RU
Категории
Рекомендации
Помощь проекту
Интересное
А знаете ли вы, что нажав сочетание клавиш Ctrl+F - можно воспользоваться поиском по сайту?
X
Copyrights © 2015: FARMF.RU - тесты, лекции, обзоры
Яндекс.Метрика
Рейтинг@Mail.ru