Механизмы регуляции вегетативных функций и инстинктов

Механизмы регуляции вегетативных функций и инстинктивного поведения.

Основы нейрофизиологии Шульговский В. В. 2000

К вегетативным относят те функции, которые обеспечивают обмен веществ в нашем организме (пищеварение, кровообращение, дыхание, выделение и др.). К ним относят также обеспечение роста и развития организма, размножения, подготовку организма к неблагоприятным воздействиям. Нервная вегетативная система обеспечивает регуляцию деятельности внутренних органов, сосудов, потовых желез и другие подобные функции.

ВЕГЕТАТИВНЫЕ ЦЕНТРЫ МОЗГОВОГО СТВОЛА

В продолговатом мозге расположены нервные центры, тормозящие деятельность сердца (ядра блуждающего нерва). В ретикулярной формации продолговатого мозга находится сосудодвигательный центр, состоящий из двух зон: прессорной и депрессорной. Возбуждение прессорной зоны приводит к сужению сосудов, а возбуждение депрессорной зоны — к их расширению. Сосудодвигательный центр и ядра блуждающего нерва постоянно посылают импульсы, благодаря которым поддерживается постоянный тонус: артерии и артериолы постоянно несколько сужены, а сердечная деятельность замедлена.

В продолговатом мозге находится дыхательный центр, который, в свою очередь, состоит из центров вдоха и выдоха. На уровне моста находится центр дыхания (пневмотаксический центр) более высокого уровня, который приспосабливает дыхание к изменениям физической нагрузки. Дыхание у человека может управляться также произвольно со стороны коры больших полушарий, например во время речи.

В продолговатом мозге находятся центры, возбуждающие секрецию слюнных, слезных и желудочных желез, выделение желчи из желчного пузыря, секрецию поджелудочной железы. В среднем мозге под передними буграми четверохолмия находятся парасимпатические центры аккомодации глаза и зрачкового рефлекса. Все перечисленные выше центры симпатической и нервной парасимпатической системы подчинены высшему вегетативному центру — гипоталамусу. Гипоталамус, в свою очередь, подвержен влиянию ряда других центров головного мозга. Все эти центры образуют лимбическую систему.

ЛИМБИЧЕСКАЯ СИСТЕМА ГОЛОВНОГО МОЗГА

Лимбическая система в мозге человека выполняет очень важную функцию, которая называется мотивационно-эмоциональной. Чтобы было ясно, что это за функция, вспомним: каждый организм, включая организм человека, имеет целый набор биологических потребностей. К ним, например, относятся потребность в пище, воде, тепле, размножении и многое другое. Для достижения какой-то определенной биологической потребности в организме складывается функциональная система (рис. 4.3). Ведущим системообразующим фактором является достижение определенного результата, соответствующего потребностям организма в данный момент. Начальным узловым механизмом функциональной системы является афферентный синтез (левая часть схемы на рис. 4.3). Афферентный синтез включает доминирующую мотивацию (например, пищевую-поиск пищи и ее потребление), обстановочную афферентацию (событий внешней и внутренней среды), пусковую афферентацию и память. Память необходима для реализации биологической потребности. Например, щенка, которого только отняли от соска, невозможно накормить мясом потому, что он не воспринимает его как пищу. Только через некоторое количество проб (запоминается вид пищи, ее запах и вкус, обстановка и многое другое) щенок начинает употреблять в пищу мясо. Интеграция этих компонентов приводит к принятию решения. Последнее, в свою очередь, связано с определенной программой действия, параллельно с ней формируется также акцептор результатов действия, т.е. нервная модель будущих результатов. Информация о параметрах результата через обратную связь поступает в акцептор действия для сопоставления с ранее сформированной моделью. Если параметры результата не соответствуют модели, то здесь возникает возбуждение, которое через ретикулярную формацию мозгового ствола активирует ориентировочную реакцию, и происходит коррекция программы действия. Примеры некоторых биологических мотиваций будут приведены ниже.

функциональная система по анохину

Организм имеет также специальный механизм для оценки биологической значимости биологической мотивации. Это эмоция. «Эмоции — особый класс психических процессов и состояний, связанных с инстинктами, потребностями и мотивами. Эмоции выполняют функцию регулирования активности субъекта путем отражения значимости внешних и внутренних ситуаций для осуществления его жизнедеятельности» (Леонтьев, 1970). Биологическим субстратом для осуществления этих важнейших функций организма служит группа мозговых структур, объединенных между собой тесными связями и составляющих лимбическую систему головного мозга.

Общая схема структур лимбического мозга показана в приложении 4. Все эти структуры головного мозга участвуют в организации мотивационно-эмоционального поведения. Одной из главных структур лимбической системы является гипоталамус. Именно через гипоталамус большинство лимбических структур объединено в целостную систему, регулирующую мотивационно-эмоциональные реакции человека и животных на внешние стимулы и формирующую адаптивное поведение, построенное на основе доминирующей биологической мотивации. В настоящее время к лимбической системе относят три группы структур головного мозга. Первая группа включает филогенетически более старые структуры коры: гиппокамп (старая кора), обонятельные луковицы и обонятельный бугорок (древняя кора). Вторая группа представлена областями новой коры: лимбической корой на медиальной поверхности полушария, а также орбито-фронтальной корой на базальной части лобной доли мозга. К третьей группе относят структуры конечного, промежуточного и среднего мозга: миндалину, перегородку, гипоталамус, переднюю группу ядер таламуса, центральное серое вещество среднего мозга.

Еще в середине прошлого столетия было известно, что повреждение структур гиппокампа, мамиллярного тела и некоторых других (сейчас мы знаем, что эти структуры входят в состав лимбической системы головного мозга) вызывает глубокие расстройства эмоций и памяти. В настоящее время глубокие нарушения памяти на недавние события в клинике повреждений гиппокампа называются синдромом Корсакова.

Многочисленные клинические наблюдения, а также исследования на животных показали, что в проявлении эмоций ведущую роль играют структуры круга Пайпетца (рис. 4.4). Американский нейроанатом Пайпетц (1937) описал цепочку взаимосвязанных нервных структур в составе лимбической системы. Эти структуры обеспечивают возникновение и протекание эмоций. Он обратил особое внимание на существование многочисленных связей между структурами лимбической системы и гипоталамусом. Повреждение одной из структур этого «круга» приводит к глубоким изменениям в эмоциональной сфере психики.

В настоящее время известно, что функция лимбической системы головного мозга не ограничивается только эмоциональными реакциями, но также принимает участие в поддержании постоянства внутренней среды (гомеостаза), регуляции цикла сон — бодрствование, процессах обучения и памяти, регуляции вегетативных и эндокринных функций. Ниже представлено описание некоторых из этих функций лимбической системы.

эмоциональный круг Пайпетца

ФИЗИОЛОГИЯ ГИПОТАЛАМУСА

Гипоталамус находится в основании головного мозга человека и составляет стенки III мозгового желудочка. Стенки к основанию переходят в воронку, которая заканчивается гипофизом (нижней мозговой железой). Гипоталамус является центральной структурой лимбической системы мозга и выполняет многообразные функции. Часть этих функций относится к гормональным регуляциям, которые осуществляются через гипофиз. Другие функции связаны с регуляцией биологических мотиваций. К ним относят потребление пищи и поддержание массы тела, потребление воды и водно-солевой баланс в организме, регуляцию температуры в зависимости от температуры внешней среды, эмоциональных переживаний, мышечной работы и других факторов, функцию размножения. Она включает у женщин регулирование менструального цикла, вынашивание и рождение ребенка, кормление и многое другое. У мужчин — сперматогенез, половое поведение. Здесь перечислены только некоторые основные функции, которые будут рассмотрены в учебнике. Гипоталамус играет также центральную роль в реакции организма на стрессовые воздействия.

Несмотря на то, что гипоталамус занимает не очень большое место в головном мозге (его площадь, если смотреть на мозг с основания, не превышает в мозге взрослого человека площади ногтя большого пальца руки), он имеет в своем составе около четырех десятков ядер. На рис. 4.5 показаны только некоторые из них. В составе гипоталамуса находятся нейроны, вырабатывающие гормоны или специальные вещества, которые в дальнейшем, действуя на клетки соответствующих эндокринных желез, приводят к выделению или прекращению выделения гормонов (так называемые рилизинг-факторы от англ. release — выделять). Все эти вещества вырабатываются в нейронах гипоталамуса, затем транспортируются по их аксонам в гипофиз. Ядра гипоталамуса связаны с гипофизом гипоталамо-гипофизарным трактом, который состоит примерно из 200 000 волокон. Свойство нейронов вырабатывать специальные белковые секреты и затем их транспортировать для выброса в кровяное русло называется нейрокринией.

гипоталамическая область мозга человека

Гипоталамус является частью промежуточного мозга и одновременно эндокринным органом. В определенных его участках осуществляется трансформация нервных импульсов в эндокринный процесс. Крупные нейроны переднего гипоталамуса образуют вазопрессин (супраоптическое ядро) и окситоцин (паравентрикулярное ядро). В других областях гипоталамуса образуются рилизинг-факторы. Одни из этих факторов играют роль гипофизарных стимуляторов (либирины), другие — ингибиторов (статины). В дополнение к тем нейронам, аксоны которых проецируются в гипофиз или в портальную систему гипофиза, другие нейроны этого же ядра отдают аксоны в многие участки головного мозга. Таким образом, один и тот же гипоталамический нейропептид может выполнять роль нейрогормона и медиатора или модулятора синаптической передачи.

РЕГУЛЯЦИЯ ТЕМПЕРАТУРЫ ТЕЛА

На уровне 36,6°С температура тела у человека поддерживается с очень большой точностью, до десятых долей градуса. У человека нормальное функционирование организма связано с поддержанием постоянной температуры тела. В организме имеются дополнительные механизмы, регулирующие интенсивность метаболических процессов и скорость обмена тепла тела и его окружения, чтобы поддерживать температуру в узком диапазоне, несмотря на значительные колебания температуры окружающей среды. Целый ряд структур ЦНС принимает участие в работе «термостата» организма. В переднем гипоталамусе имеются нейроны, активность которых чувствительна к изменению температуры этой области мозга. Если искусственно поднять температуру переднего гипоталамуса, то у животного наблюдаются увеличение частоты дыхания, расширение периферических кровеносных сосудов и увеличенный расход тепла. При охлаждении переднего гипоталамуса развиваются реакции, направленные на усиленную теплопродукцию и сохранение тепла: дрожь, пилоэрекция (поднятие волос), сужение периферических сосудов. Периферические тепловые и холодовые терморецепторы несут в гипоталамус информацию о температуре окружающей среды, и до изменения температуры головного мозга заблаговременно включаются соответствующие рефлекторные ответы. Поведенческие и эндокринные реакции, активируемые холодом, контролируются задним гипоталамусом, а те, что активируются теплом, — передним гипоталамусом. После удаления головного мозга впереди гипоталамуса животные остаются теплокровными, однако, точность температурной регуляции ухудшается. Разрушение у животных переднего гипоталамуса делает невозможным поддерживание температуры тела.

КОНТРОЛЬ ВОДНОГО БАЛАНСА В ОРГАНИЗМЕ

Водный баланс организма определяется отношением потребления и потери воды. Прием воды регулируется механизмом жажды. Выведение воды в значительной мере определяется механизмом контроля почек. Питьевая мотивация обеспечивается взаимодействием многих факторов, среди которых осмотическое давление внутриклеточной и экстраклеточной жидкости, а также температура наиболее существенно влияют на механизмы жажды. Потеря воды, соответствующая 0,5-0,8% массы тела, увеличение осмотического давления на 1 — 2% или повышение температуры являются сильными стимулами приема воды. Ряд других факторов также вызывает жажду, например подсыхание слизистой оболочки рта или поедание сухой пищи. Стимуляция или повреждение определенных пунктов гипоталамуса вызывает отказ от приема воды (адипсия) или увеличение поглощения воды (полидипсия). Электрическая стимуляция или введение небольшого количества гипертонического раствора в переднюю медиальную часть гипоталамуса (центр жажды) вызывает у животных полидипсию, они за сутки поглощают количество воды, составляющее до 25% массы тела, а разрушение — приводит к адипсии.

РЕГУЛЯЦИЯ ПИЩЕВОГО ПОВЕДЕНИЯ

Регуляция пищевого поведения осуществляется рядом структур ЦНС и прежде всего двух взаимодействующих центров-центром голода (латеральное ядро гипоталамуса) и центром насыщения (вентромедиальное ядро гипоталамуса). Электрическая стимуляция центра голода провоцирует акт еды у сытого животного, тогда как стимуляция центра насыщения прерывает прием пищи. Разрушение центра голода вызывает отказ от потребления пищи (афагия) и воды, что часто приводит к гибели животного (рис. 4.9). Электрическая стимуляция латерального ядра гипоталамуса увеличивает секрецию слюнных и желудочных желез, желчи, инсулина, усиливает моторную деятельность желудка и кишечника. Повреждение центра насыщения увеличивает прием пищи (гиперфагия). Практически сразу после такой операции животное начинает есть много и часто, что приводит к гипоталамическому ожирению. На рис. 4.10 показаны две крысы: одна с нормальной массой тела, а другая — с гипоталамическим ожирением. При ограничении пищи масса тела уменьшается, но как только ограничения снимают, вновь проявляется гиперфагия, снижающаяся лишь при развитии ожирения. Эти животные проявляли также повышенную разборчивость при выборе пищи, предпочитая наиболее вкусную. Ожирение, следующее за повреждением вентромедиального ядра гипоталамуса, сопровождается анаболическими изменениями: изменяется обмен глюкозы, повышается уровень холестерина и триглицеридов в крови, снижается уровень потребления кислорода и утилизации аминокислот. Электрическая стимуляция вентромедиального гипоталамуса уменьшает секрецию слюнных и желудочных желез, инсулина, моторику желудка и кишечника. Таким образом, можно заключить, что латеральный гипоталамус вовлечен в регуляцию метаболизма и внутренней секреции, а вентромедиальный гипоталамус оказывает на нее тормозное влияние.

повреждение латерального и вентромедиального ядер гипоталамуса

В норме сахар крови является одним из важных (но не единственным) факторов пищевого поведения. Его концентрация весьма точно отражает энергетическую потребность организма, а величина разности его содержания в артериальной и венозной крови тесно связана с ощущением голода или сытости. В латеральном ядре гипоталамуса имеются глюкорецепторы (нейроны, в мембране которых есть рецепторы к глюкозе), которые тормозятся при увеличении уровня глюкозы крови. Установлено, что их активность в значительной степени определяется глюкорецепторами вентромедиального ядра, которые первично активируются глюкозой. Гипоталамические глюкорецепторы получают информацию о содержании глюкозы в других частях тела. Об этом сигнализируют периферические глюкорецепторы, находящиеся в печени, каротидном синусе, стенке желудочно-кишечного тракта. Таким образом, глюкорецепторы гипоталамуса, интегрируя информацию, получаемую по нервным и гуморальным путям, участвуют в контроле приема пищи.

нормальная крыса, крыса с гипоталамическим ожирением

Получены многочисленные данные об участии различных мозговых структур в контроле приема пищи. Афагия (отказ от пищи) и адипсия (отказ от воды) наблюдаются после повреждения бледного шара, красного ядра, покрышки среднего мозга, черной субстанции, височной доли, миндалины. Гиперфагия (обжорство) развивается после повреждения лобных долей, таламуса, центрального серого вещества среднего мозга.

Несмотря на врожденный характер пищевых реакций, многочисленные данные показывают, что в регуляции приема пищи важная роль принадлежит условнорефлекторным механизмам. Это является основной причиной переедания и, следовательно, приобретения лишней массы тела современным человеком. Вспомните, каким обжорством мы страдаем, приходя в гости. В регуляции пищевого поведения участвуют многие факторы. Общеизвестно влияние на аппетит вида, запаха и вкуса пищи. Степень наполнения желудка также влияет на аппетит. Хорошо известна зависимость приема пищи от температуры окружающей среды: низкая температура стимулирует прием пищи, высокая — тормозит. Конечный приспособительный эффект всех механизмов, участвующих в пищевом поведении, состоит в приеме количества пищи, сбалансированного по калорийности с расходуемой энергией. Этим достигается постоянство массы тела.

РЕГУЛЯЦИЯ ПОЛОВОГО ПОВЕДЕНИЯ

У млекопитающих гипофиз секретирует гонадотропные гормоны, которые оказывают регулирующее влияние на различные физиологические процессы, имеющие отношение к размножению. Наибольший эффект гонадотропные гормоны оказывают на функционирование половых желез. Гормоны мужских и женских половых желез (андрогены и эстрогены), действуя на ЦНС, активируют половое поведение. В организме взрослой женщины наблюдаются периодические изменения различных функций, связанные с повторяющимися процессами роста и созревания фолликулов, овуляции и образования желтых тел (рис. 4.11). Созревание фолликулов сопровождается высоким уровнем секреции половых гормонов. В этот период яйцеклетка освобождается из фолликула (овуляция) и попадает в половые пути. Этот период является самым благоприятным для зачатия. Важную роль здесь играет действие эстрогена на гипоталамус.

Удаление у крысы яичников вызывает снижение и прекращение половой активности. Введение эстрогена в гипоталамус овариэктомированных (удалены яичники) самок сопровождается всем комплексом проявлений эструса. Наибольшее значение для организации полового поведения самок, по-видимому, имеет гипоталамус. Его разрушение приводит к потере половой активности. У кроликов стимуляция преоптической области и базальной части гипоталамуса вызывает овуляцию. Радиоактивно меченый эстроген в наибольшем количестве накапливается в переднем гипоталамусе и ядрах миндалины. При локальных повреждениях в различных областях гипоталамуса можно заблокировать либо поведение, характерное для эструса, либо секрецию гонадотропного гормона.

У самцов животных кастрация прекращает половую активность, хотя у отдельных видов, например у домашних копытных, половое влечение сохраняется в течение года. Восстановление дооперационного уровня половой активности достигается постоянным введением половых гормонов. Нередко введение самкам мужского полового гормона вызывает поведение, характерное для самцов.

репродуктивный цикл женщины

Аналогичный эффект можно наблюдать у кастрированных самцов после введения эстрогена — поведение, характерное для самок.

В эмбриональном или раннем постнатальном периоде развития (в зависимости от вида животного) происходит половая дифференцировка головного мозга по отношению к регуляции секреции гонадотропных гормонов гипофиза, реактивности к половым гормонам, поведению, росту и др. Половые различия мозга определяются разными структурами и прежде всего медиальным гипоталамусом. Важным фактором указанной дифференцировки является действие на мозг в «критический период» развития организма половых гормонов. До этого мозг независимо от генетического пола эмбриона или новорожденного имеет женский тип. Под влиянием андрогена, вырабатываемого семенниками, мозг маскулинизируется, т. е. приобретает мужской тип. Если кастрировать новорожденных самцов крыс, мозг сохранит женский тип. Если таким животным пересадить яичник и вагинальную ткань, у них в дальнейшем устанавливается женский половой цикл. Описанный эффект не возникает при кастрации на 10-й день, поскольку мозг уже маскулинизирован. Однократное введение новорожденной самке тестостеронпропионата (аналог тестостерона) приводит к маскулинизации мозга и, как следствие этого-к отсутствию овуляторного цикла (овуляции и развития желтых тел). Обработка препаратом в более поздние сроки малоэффективна. В период половой дифференцировки мозга определяется также реактивность центров полового поведения к специфическим раздражителям и гормонам. У приматов, включая человека, половые отличия в функционировании мозга устанавливаются во внутриутробном периоде.

У млекопитающих спаривание представляет сложный процесс, в регуляции которого принимают участие разные отделы ЦНС. Большая часть вегетативных и двигательных реакций, составляющих половой акт, интегрируется на спинальном уровне в поясничных и крестцовых сегментах. После перерезки спинного мозга путем стимуляции половых органов можно вызвать эрекцию и даже эякуляцию. Данный эффект отсутствует у животных с перерезкой ствола мозга каудальнее варолиева моста. По-видимому, это свидетельствует о торможении спинальных механизмов продолговатым мозгом.

Гипоталамус участвует в регуляции половой активности у самца. Стимуляция области медиального пучка переднего мозга и рядом расположенных участков гипоталамуса вызывает у обезьян комплекс эмоциональных и поведенческих проявлений готовности к спариванию. Миндалина также включена в систему контроля полового поведения. У обезьян и кошек после удаления миндалины и периформной коры развивается гиперсексуальность, проявляющаяся в попытках спариться с представителями своего пола, животными других видов и даже неодушевленными предметами. Возможно, в норме миндалина оказывает тормозное влияние на половое поведение. Значение коры больших полушарий в организации полового поведения в ходе эволюции млекопитающих возрастает. У приматов при становлении рефлекса спаривания обучение играет существенную роль. У других животных, например у кошек и собак, половое поведение после декортикации не утрачивается, но оно, как правило, не завершается спариванием.

НЕРВНЫЕ МЕХАНИЗМЫ СТРАХА И ЯРОСТИ

Страх и ярость представляют собой тесно связанные эмоции, однако они значительно отличаются как по вегетососудистому проявлению, так и по субъективным переживаниям. Способность проявлять страх и ярость остается у декортицированных животных (удалена кора больших полушарий), однако для них характерна эмоциональная неустойчивость. Гипоталамус, по-видимому, является одной из основных структур, ответственных за происхождение ярости и страха. Например, стимуляция задних областей гипоталамуса вызывает ярость у кошек и обезьян. Разрушение вентролатерального ядра у крыс и кошек приводит к продолжительным периодам агрессии. Имеются также данные об ответственности за ярость и оборонительное поведение у кошек некоторых областей переднего гипоталамуса. Страх и противоположную эмоцию — ярость при электрической стимуляции гипоталамуса удавалось вызвать путем стимуляции рядом расположенных пунктов.

Миндалина также, по-видимому, имеет отношение к механизмам ярости. После двустороннего удаления этой структуры у обезьян наблюдалась эмоциональная ареактивность, связанная с потерей чувства страха и ярости. Они без боязни брали в рот змей, которых обезьяны обычно панически боятся. Разрушение миндалины приводит к изменениям их внутригрупповых отношений. Самцы, ранее занимавшие высокий ранг в группе, переходят в подчиненное положение. Имеются также многочисленные описания превращения диких животных в ручных после разрушения миндалины. Дополнительное удаление коры делает такое животное весьма злобным. Таким образом, в организации реакции страха и ярости принимает участие сложная иерархия мозговых структур.

ФИЗИОЛОГИЯ МИНДАЛИНЫ

Миндалевидный комплекс представляет собой довольно крупное ядерное образование (у человека — около 10 х 8 х 5 мм), расположенное в глубине передней части височной доли над ростральным отделом нижнего рога бокового желудочка. Миндалина образует связи с гипоталамусом, преимущественно с той его частью, которая участвует в контроле функции гипофиза. На мембране нейронов этой части миндалины есть рецепторы к половым и стероидным гормонам надпочечников. Благодаря этому циркулирующие в крови гормоны контролируют активность этих нейронов, а они, в свою очередь, могут влиять на гипоталамус и, таким образом, на секрецию из гипофиза (обратная связь), а также участвовать в формах поведения, контролируемых этими гормонами. Миндалина образует также обширные связи с обонятельной луковицей. Благодаря этим связям обоняние у животных участвует в контроле репродуктивного (размножение) поведения. Например, феромоны (видоспецифические химические посредники) влияют на половое поведение через обонятельную систему. Многие виды животных имеют даже дополнительную обонятельную систему (так называемый якобсонов орган), передающую специализированную информацию к структурам лимбической системы, связанную с половым поведением. У человека эта система плохо развита, но полностью отрицать ее существование нельзя. В пользу этого может указывать хотя бы тот факт, что парфюмерия для женщин и мужчин различна.

У приматов, в том числе у человека, повреждения миндалины снижают эмоциональную окраску реакций, кроме того, у них полностью исчезают агрессивные аффекты.

ФИЗИОЛОГИЯ ГИППОКАМПА

Гиппокамп располагается в медиальной части височной доли. Особое место в системе связей гиппокампа занимает участок новой коры в районе гиппокампа (так называемая энторинальная кора). Этот участок коры получает многочисленные афференты практически от всех областей неокортекса и других отделов головного мозга (миндалины, передних ядер таламуса и др.) и является основным источником афферентов к гиппокампу. Гиппокамп получает также входы от зрительной, обонятельной и слуховой систем. Самой крупной проводящей системой гиппокампа является свод, который связывает гиппокамп с гипоталамусом. Кроме этого, гиппокампы обоих полушарий связаны между собой комиссурой (plasterium).

Повреждение гиппокампа приводит к характерным нарушениям памяти и способности к обучению. В 1887 г. русский психиатр С. С. Корсаков описал грубые расстройства памяти у больных алкоголизмом (синдром Корсакова). Посмертно у них были обнаружены дегенеративные повреждения гиппокампа. Нарушение памяти проявлялось в том, что больной помнил события отдаленного прошлого, в том числе детства, но не помнил о том, что произошло с ним несколько дней или даже минут тому назад. Например, он не мог запомнить своего лечащего врача: если врач выходил из палаты на 5 мин, больной его не узнавал при повторном посещении.

Обширные повреждения гиппокампа у животных характерным образом нарушают протекание условнорефлекторной деятельности. Например, крысу довольно легко научить находить приманку в 8-лучевом лабиринте (лабиринт представляет собой центральную камеру, от которой радиально отходят 8 коридоров) только в каждом втором или четвертом рукаве. Крыса с поврежденным гиппокампом не обучается этому навыку и продолжает обследовать каждый рукав.

НЕЙРОФИЗИОЛОГИЯ МОТИВАЦИЙ

В организме под влиянием определенной физиологической потребности развивается эмоционально окрашенное состояние — мотивация. Эффективным методом исследования нейрофизиологических механизмов различных мотиваций является метод самостимуляции, предложенный американским ученым Дж. Олдсом (1953).

Крысе в различные участки головного мозга вживляют специальные металлические электроды. Если при случайном нажатии на рычаг животное произведет электрическую стимуляцию собственного мозга через вживленные в различные его участки электроды, то в зависимости от локализации приложения тока наблюдается различный характер поведения. При нахождении электродов в одних структурах мозга животное стремится к повторному раздражению, в других -избегает его, а в третьих-остается безразличным. На рис. 4.12 показана схема эксперимента для получения у крысы реакции самостимуляции. Пункты мозга, охотно стимулируемые животным,-положительные зоны-находятся главным образом в медиальной области головного мозга, простирающейся от ядер миндалины через гипоталамус к покрышке среднего мозга (рис. 4.13). В области покрышки среднего мозга, заднего гипоталамуса (ростральное мамиллярных тел) и перегородки частота самостимуляции, например, у крыс, была наибольшей и достигала 7000 в час. Отдельные животные нажимали на рычаг до полного изнеможения, отказываясь от пищи и воды.

Пункты мозга, связанные с избеганием стимуляции (отрицательные зоны), находились преимущественно в дорсальной части среднего мозга и латеральной части заднего гипоталамуса. В мозге крысы пункты положительной самостимуляции составляют примерно 35%, отрицательные — 5% и нейтральные — 60% (см. рис. 4.13). Обширная система положительного подкрепления включает ряд подсистем, соответствующих основным видам мотиваций — пищевой, половой и др. У отдельных животных голод увеличивает, а насыщение снижает частоту самостимуляции через электроды в гипоталамусе. У самцов после кастрации уменьшается частота самостимуляции определенных точек мозга. Введение тестостерона восстанавливает исходную чувствительность к току. В тех пунктах мозга, где голод повышает частоту самостимуляции, введенные андрогены снижали ее, и наоборот.

Мотивация, вызываемая искусственно, не менее эффективна, чем естественные мотивации, соответствующие основным видам физиологических потребностей, таким, как потребление пищи, воды и пр. Ради «приятной» стимуляции мозга животные даже переносят сильное болевое раздражение, направляясь к рычагу через электрифицированный пол камеры. Вместе с тем вопрос о соответствии механизмов положительного подкрепления при самостимуляции механизмам естественных мотиваций остается дискуссионным. Однако существенно, что при определенной интенсивности тока, пропущенного через пункты самостимуляции, можно вызвать такие реакции, как прием пищи, питье, спаривание, и другие специфические виды поведения. Локализация этих пунктов, как правило, совпадает с центрами, имеющими отношение к контролю различных биологических видов мотиваций. Кроме того, самостимуляция может обеспечивать необходимую мотивацию для обучения животного. Неизвестно, что чувствует животное при самостимуляции. Наблюдения над больными людьми с хронически вживленными в мозг электродами с целью диагностики и лечения показывают, что в ряде случаев у них возникают реакции самостимуляции, которые часто воспринимаются ими как снятие напряжения, облегчение и т.д. Однако у отдельных больных стремление к самостимуляции связано с чувством удовольствия.

схема опыта по самораздражению мозга

СТРЕСС

Наш организм постоянно подвергается неблагоприятным воздействиям, которые могут иметь физический характер. Например, сильное охлаждение или перегрев тела, потеря крови и различные травмы. Неблагоприятными воздействиями на организм могут быть лишения необходимых потребностей, например голод, жажда. Наконец, эти воздействия могут быть направлены на психику, например утеря близких родственников и друзей, присутствие при насилии и т.д. Оказывается, несмотря на различие таких неблагоприятных воздействий, они вызывают в организме довольно однообразные изменения, которые называются стрессом.

Концепция стресса была сформулирована канадским ученым Гансом Селье в 1936 г. Согласно этим представлениям под влиянием различных вредящих агентов, стрессоров (холод, токсичные вещества в сублетальных дозах, чрезмерная мышечная нагрузка, кровопотеря и т. д.) возникает характерный синдром, который не зависит от природы вызвавшей его причины и называется стрессом. В своем развитии синдром проходит три стадии. В первой — стадии тревоги — в течение 6-48 ч после начала повреждения наблюдается быстрое уменьшение вилочковой железы, селезенки, печени, лимфатических желез, меняется состав крови (исчезают эозинофилы), в слизистой оболочке желудочно-кишечного тракта появляются язвы. Во второй стадии — резистентности (устойчивости) — прекращается секреция из гипоталамуса соматотропного и гонадотропного гормонов, и значительно увеличиваются надпочечники. В зависимости от силы воздействия на этой стадии либо происходит увеличение сопротивляемости организма и восстановление исходного состояния, либо организм теряет сопротивляемость, что приводит к третьей стадии — стадии истощения. Селье рассматривал стресс как генерализованное неспецифическое усилие организма приспособиться к новым условиям и поэтому назвал его (общим адаптационным синдромом).

Стереотипный характер синдрома определяется рядом нервных и нейроэндокринных механизмов. Наиболее типичное проявление синдрома развивается в результате освобождения из гипофиза адренокортикотропного гормона (АКТГ), который действует на надпочечники. Важную роль в развитии проявлений стресса играет соматотропный гормон, ослабляющий эффект АКТГ. Изъязвление слизистой оболочки кишечника и желудка при стрессе имеет чисто нервную природу. Этот симптом можно вызвать в эксперименте на животном хронической механической или электрической стимуляцией переднего гипоталамуса.

 

А Вам помог наш сайт? Мы будем рады если Вы оставите несколько хороших слов о нас.
Категории
Рекомендации
Можно выбрать
Интересное
А знаете ли вы, что нажав сочетание клавиш Ctrl+F - можно воспользоваться поиском по сайту?
X
Copyrights © 2015: FARMF.RU - тесты, лекции, обзоры
Яндекс.Метрика
Рейтинг@Mail.ru