Лекции по анатомии и физиологии (краткий курс). Часть 5

Лекции по анатомии и физиологии (краткий курс). Часть 5

Лекции по анатомии и физиологии (краткий курс). Часть 1

  • 27. Пищеварение в тонком кишечнике
  • 28. Пищеварение в толстых кишках
  • 29. Водно-солевой, белковый, жировой и углеводный обмен
  • 30. Выделительная система

27. Пищеварение в тонком кишечнике

Пищевые массы (химус) из двенадцатиперстной кишки перемещаются в тонкий кишечник, где продолжается их переваривание пищеварительными соками, выделившимися в двенадцатиперстную кишку. Вместе с тем, здесь начинает действовать и собственный кишечный сок, вырабатываемый либеркюновыми и бруннеровы м и железами слизистой оболочки тонкой кишки. В кишечном соке содержится энтерокиназа, а также полный набор ферментов, расщепляющих белки, жиры и углеводы. Эти ферменты участвуют лишь в пристеночном пищеварении, так как в полость кишки они не выделяются. Полостное пищеварение в тонком кишечнике осуществляется ферментами, поступившими с пищевым химусом. Полостное пищеварение наиболее эффективно для гидролиза крупномолекулярных веществ. Пристеночное (мембранное) пищеварение, открытое акад. А. М., Уголевым, происходит на поверхности микроворсинок тонкой кишки. Оно завершает промежуточный и заключительный этапы пищеварения путем гидролиза промежуточных продуктов расщепления.

Микроворсинки представляют собой цилиндрические выросты кишечного эпителия высотой 1 -2 мкм. Количество их огромно — от 50 до 200 млн на 1 мм2 поверхности кишки, что увеличивает внутреннюю поверхность тонкого кишечника в 300-500 раз. Обширная поверхность микроворсинок улучшает и процессы всасывания. Продукты промежуточного гидролиза попадают в зону так называемой щеточной каймы, образованной микроворсинками, где происходит заключительная стадия гидролиза и переход к всасыванию. Основными ферментами, участвующими в пристеночном пищеварении, являются амилаза, липаза и протеазы.

Благодаря этому пищеварению происходит расщепление 80-90% пептидных и гликолизных связей и 55-60% – триглицеридов. Пристеночное пищеварение находится в тесном взаимодействии с полостным. Полостное пищеварение подготавливает исходные пищевые субстраты для пристеночного пищеварения, а последнее уменьшает объем обрабатываемого химуса в полостном пищеварении за счет перехода продуктов частичного гидролиза в щеточную кайму. Эти процессы способствуют наиболее полному перевариванию всех компонентов пищи и подготавливают их к всасыванию. Моторная деятельность тонкого кишечника обеспечивает перемешивание химуса с пищеварительными секретами и продвижение его по кишке благодаря сокращению круговой и продольной мускулатуры.

При сокращении продольных волокон гладкой мускулатуры кишечника происходит укорочение участка кишки, при расслаблении — его удлинение. Продолжительность периодов сокращения и расслабления участков кишки при маятникообразных движениях составляет 4-6 с. Такая периодичность обусловлена автоматией гладкой мускулатуры кишечника — способностью мышц периодически сокращаться и расслабляться без внешних воздействий. Сокращения круговой мускулатуры кишечника вызывают перистальтические движения, которые способствуют передвижению пищи вперед. По длине кишки одновременно движется несколько перистальтических волн. Сокращение продольных и круговых мышцрегулируется блуждающим и симпатическим нервами. Блуждающий нерв стимулирует моторную функцию кишечника. По симпатическому нерву передаются тормозные сигналы, которые снижают тонус мышц и угнетают механические движения кишечника. На моторную функцию кишечника оказывают влияние и гуморальные факторы: серотонин, холин и энтерокинин стимулируют движение кишечника.

ВСАСЫВАНИЕ ПРОДУКТОВ ПЕРЕВАРИВАНИЯ ПИЩИ

Всасыванием называется процесс поступления в кровь и лимфу различных веществ из пищеварительной системы. Кишечный эпителий является важнейшим барьером между внешней средой, роль которой выполняет полость кишечника, и внутренней средой организма (кровь, лимфа), куда поступают питательные вещества. Всасывание представляет собой сложный процесс и обеспечивается различными механизмами: фильтрацией, связанной с разностью гидростатического давления в средах, разделенных полупроницаемой мембраной; диффузией веществ по градиенту концентрации; осмосом, требующим затрат энергии, поскольку он происходит против градиента концентрации. Количество всасывающихся веществ не зависит от потребностей организма (за исключением железа и меди), оно пропорционально потреблению пищи. Кроме того, слизистая оболочка органов пищеварения обладает способностью избирательно всасывать одни вещества и ограничивать всасывание других.

Способностью к всасыванию обладает эпителий слизистых оболочек всего пищеварительного тракта. Например, слизистая полости рта может всасывать в небольшом количестве эфирные масла, на чем основано применение некоторых лекарств. В незначительной степени способна к всасыванию и слизистая оболочка желудка. Вода, алкоголь, моносахариды, минеральные соли могут проходить через слизистую желудка в обоих направлениях. Наиболее интенсивно процесс всасывания осуществляется в тонком кишечнике, особенно в тощей и подвздошной кишке, что определяется их большой поверхностью, во много раз превышающей поверхность тела человека. Поверхность кишечника увеличивается наличием ворсинок, внутри которых находятся гладкие мышечные волокна и хорошо развитая кровеносная и лимфатическая сеть. Интенсивность всасывания в тонком кишечнике составляет около 2-3 л в 1 час. Углеводы всасываются в кровь в основном в виде глюкозы, хотя могут всасываться и другие гексозы (галактоза, фруктоза).

Всасывание происходит преимущественно в двенадцатиперстной кишке и верхней части тощей кишки, но частично может осуществляться в желудке и толстом кишечнике, Белки всасываются в кровь в виде аминокислот и в небольшом количестве в виде полипептидов через слизистые оболочки двенадцатиперстной и тощей кишок. Некоторые аминокислоты могут всасываться в желудке и проксимальной части толстого кишечника. Жиры всасываются большей частью в лимфу в виде жирных кислот и глицерина только в верхней части тонкого кишечника. Жирные кислоты нерастворимы в воде, поэтому их всасывание, а также всасывание холестерина и других липоидов происходит лишь при наличии желчи. Вода и некоторые электролиты проходят через мембраны слизистой оболочки пищеварительного канала в обоих направлениях. Вода проходит путем диффузии, и в ее всасывании большую роль играют гормональные факторы. Наиболее интенсивное всасывание происходит в толстом кишечнике. Растворенные в воде соли натрия, калия и кальция всасываются преимущественно в тонком кишечнике по механизму активного транспорта, против градиента концентрации.

28. Пищеварение в толстых кишках

Переваривание пищи заканчивается в основном в тонком кишечнике. Железы толстого кишечника выделяют небольшое количество сока, богатого слизью и бедного ферментами. Низкая ферментативная активность сока толстого кишечника обусловлена малым количеством непереваренных веществ в химусе, поступающем из тонкого кишечника. Сокоотделение в этом отделе кишечника регулируется главным образом местными влияниями; механическое раздражение усиливает секрецию в 8-10 раз. Большую роль в жизнедеятельности организма и функций пищеварительного тракта играет микрофлора толстого кишечника, где обитают миллиарды различных микроорганизмов (анаэробные и молочные бактерии, кишечная палочка и др.). нормальная микрофлора толстого кишечника принимает участие в осуществлении нескольких функций: защищает организм от вредных микробов; участвует в синтезе ряда витаминов (витамины группы В, витамин К) и других биологически активных веществ; инактивирует и разлагает ферменты (трипсин, амилаза, желатиназа и др.), поступившие из тонкого кишечника, а также сбраживает углеводы и вызывает гниение белков.

Движения толстого кишечника очень медленные, поэтому около половины времени, затрачиваемого на пищеварительный процесс (1-2 суток), идет на передвижение остатков пищи в этом отделе кишечника. В толстом кишечнике интенсивно происходит всасывание воды, вследствие чего образуются каловые массы, состоящие из остатков непереваренной пищи, слизи, желчных пигментов и бактерий. Опорожнение прямой кишки (дефекация) осуществляется рефлекторно. Изменения кишечного содержимого в толстых кишках Для переваривания пищи толстая кишка имеет весьма небольшое значение, так как пища почти полностью переваривается и всасывается уже в тонкой кишке, за исключением лишь некоторых веществ, например растительной клетчатки. Переваривание происходит в толстой кишке под действием ферментов пищеварительных соков, выделившихся в верхних участках пищеварительного тракта. В толстых кишках находится богатая бактерийная флора, вызывающая сбраживание углеводов и гниение белков.

При происходящем под влиянием бактерий в толстых кишках расщеплении клетчатки освобождается содержимое растительных клеток, которое подвергается воздействию ферментов кишечного сока, расщепляется и частично всасывается. Под влиянием вызывающих гниении бактерий в толстых кишках происходит разрушение невсосавшихся аминокислотой и других продуктов переваривания белка. При этом образуется ряд ядовитых для. организма соединений: индол и другие, которые, всасываясь в кровь, способны вызывать интоксикацию организма. Эти вещества обезвреживаются в печени. В толстых кишках происходит сгущение поступающего в них содержимого вследствие всасывания воды. Здесь образуется кал, который имеет плотную консистенцию. В процессе формирования каловых масс большое значение имеют плотные вещества кишечного сока, а именно комочки слизи, которые склеивают частицы непереваренных остатков пищи.

В состав кала входят: слизь, остатки отмершего эпителия слизистой оболочки, холестерин, продукты изменения пигментов желчи, сообщающие калу характерный цвет, нерастворимые соли и бактерии; последние составляют иногда 30-40% выделяемого за сутки кала. В состав каловых масс входят также оставшиеся непереваренными части пищи — растительная клетчатка, кератины и некоторые коллагены. При нарушении пищеварительных процессов и понижении усвоения пищевых веществ в кале обнаруживаются большие или меньшие количества белков, жиров и углеводов пищи.

РЕГУЛЯЦИЯ ПИЩЕВАРЕНИЯ

Регуляция пищеварения с исключительной глубиной и тщательностью была изучена И.О. Павловым. Им был разработан новый метод изучения желудочной секреции. И.П. Павлов оперативным путем изолировал часть желудка собаки с сохранением вегетативной иннервации. В эту изолированную часть, обладающую полноценной функцией, пища не попадала. Через вживленную в изолированный желудочек фистулу можно было собирать желудочный сок на любом этапе пищеварения. И.П. Павлову, первому из русских ученых, 7 октября 1904 г. была присуждена Нобелевская премия в знак признания его работ по физиологии пищеварения.

Потребность организма в пище проявляется в виде физиологической реакции голода. У человека голод приобретает выраженную субъективную окраску — от относительного безразличия к пище до яркой эмоциональной реакции. Физиологической основой голода является возбуждение пищевого центра, представленного в гипоталамусе, лимбической системе. Высокочувствительные к концентрации пищевых веществ (глюкозы, аминокислот, жирных кислот) в крови, нервные центры гипоталамуса и лимбического мозга обеспечивают формирование поведенческой реакции, направленной на удовлетворение потребности в пище. Гипоталамус, будучи высшим подкорковым центром вегетативной регуляции, обеспечивает управление функцией пищеварительной системы через симпатическую и парасимпатическую нервную систему. Регуляция секреторной функции слюнных желез осуществляется через парасимпатические нервы, идущие в составе барабанной струны (подчелюстная и подъязычная железы), языкоглоточного нерва (околоушная железа) и через симпатические нервы, отходящие от верхнего шейного симпатического узла.

Парасимпатические влияния приводят к усилению кровотока и повышенной секреции слюны. Подобный эффект вызывают и тканевые гормоны слюнных желез — калликреин и брадикинин. Симпатическая иннервация стимулирует трофическую функцию, регулирует синтез ферментов слюны. При раздражении симпатических нервов выделяется небольшое количество слюны, но она чрезвычайно богата ферментами и муцином. В секреции желудочных желез выделено три фазы: сложно-рефлекторная, желудочная и кишечная. Сложнорефлекторная фаза является результатом действия комплекса условных и безусловных раздражителей, предшествующих попаданию пищи в желудок-. Вторця^фаза — желудочная — обусловлена механическим раздражением стенок желудка пищевым комком и продуктами переваривания пищи. Интенсивность функции пищеварительных желез желудка в первой фазе зависит от силы раздражающих агентов, связанных с приемом пищи.

Она может быть резко понижена при действии посторонних раздражителей, а также при неприятном запахе, виде, вкусе пищи. Возбуждение секреции во вторую фазу желудочного пищеварения обусловлено импульсами из механорецепторов, передаваемыми в пищеварительный центр по центростремительным ветвям блуждающего нерва. Ведущую регуляторную роль в этой фазе играют гормоны гастрин, бомбезин, мотилин, вырабатываемые стенками пилорической части желудка. Гастрин образуется из неактивного прогастрина под влиянием продуктов переваривания. Всасываясь в кровь, он возбуждает секрецию желудочных желез гуморальным путем. Образование гастрина тормозится соляной кислотой. Секрецию желудочных желез возбуждают некоторые биологически активные вещества.

Хорошо изучена стимулирующая роль гистамина. Он содержится в мясе, овощах, а также вырабатывается слизистой оболочкой желудка. Большинство тканевых гормонов двенадцатиперстной кишки — холецистокинин, энтерогастрон — оказывают тормозящее влияние на желудочную секрецию. Секреция желудочного сока снижается серотонином, нейротензином, соматостатином. Скорость перехода желудочного содержимого в двенадцатиперстную кишку зависит от сокращения продольных и кольцевых слоев мышц желудка. Сила сокращения гладкой мускулатуры желудка определяется количеством и качеством пищи, активностью ферментов желудочного сока. Всасывание и перенос кровью биологически активных веществ, образующихся в стенке тонкого кишечника, вызывает изменение желудочной секреции через кровь. Это третья, кишечная фаза желудочной секреции. Кишечная фаза желудочной секреции начинается с поступления в кровь гормонов энтеро-гастрина, возбуждающего желудочную секрецию, и энтерогастрона – тормозящего фактора.

По механизму влияния на желудочную секрецию энтерогастрин может быть идентифицирован с гастрином, а энтерогастрон – с гастроном. Первая фаза кишечного пищеварения начинается с раздражения пищей рецепторов ротовой полости и щетки. В первую фазу выделяется небольшое количество богатого ферментами поджелудочного сока. Вторая фаза кишечного пищеварения связана с желудочной секрецией. Раздражение хеморецепторов желудка вызывает поток импульсов, поступающих в пищевой центр по блуждающему нерву. Отсюда центробежные пусковые сигналы поступают к тонкому кишечнику, поджелудочной железе и печени. Переход пищи из желудка в кишечник сопровождается усилением функции поджелудочной железы. Возбудителями секреции поджелудочной железы являются соляная кислота желудочного сока, жир и продукты его расщепления, а также некоторые пищевые приправы. Соляная кислота действует на слизистую оболочку двенадцатиперстной кишки, стимулируя выделение тканевого гормона просекретина.

Активная форма просекретина – секретин – всасывается в кровь и усиливает работу поджелудочной железы. Выделение поджелудочного сока стимулируется и ее собственным гормоном — инсулином. Другой гормон – глюкагон тормозит секрецию поджелудочного сока. Тормозящее действие оказывают также соматостатин и калыштонин. Активизирующее влияние на секрецию поджелудочной железы оказывают гастрин, бомбезин, серотонин, а также соли желчных кислот. Образование и выделение желчи находится под нервным и гуморальным контролем. По блуждающему нерву к печени поступают сигналы, усиливающие желчеобразование. Симпатические нервы тормозят отделение желчи. Мощным желчегонным действием обладает уже упомянутый секретин, а также гормоны эпифиза и гипофиза. Гормон щитовидной железы тироксин, напротив, угнетает желчеотделение. Стимулятором образования и выделения желчи является тканевый гормон стенки двенадцатиперстной кишки холецистокинин. Из пищевых веществ, усиливающих желчегонную функцию, можно назвать жиры, экстрактивные вещества мяса, некоторые виды пищевых приправ. Регулятором секреции бруннеровых желез тонкого кишечника являются гормоны двенадцатиперстной кишки дуокринин и энтерокринин.

Всасывающая функция микроворсинок усиливается гормоном тонких кишок вилликшшном. В функциональной системе регуляции процесса пищеварения важная роль принадлежит энтеральной нервной системе – ауэрбаховскому нервному сплетению. В его состав входят активирующая нервная сеть, промежуточная и рецепторная системы. Активирующая нервная сеть сформирована из стандартных элементов – нейронов со спонтанной активностью. Она обеспечивает самостоятельную интегративную деятельность нервного сплетения кишечной трубки. Промежуточная система состоит из нейронов со спонтанной активностью, а также нейронов, находящихся под контролем вегетативной нервной системы. В рецепторную систему входят механо- и термочувствительные нервные клетки. Они регулируют температуру и моторную деятельность пищеварительного тракта. Высшим подкорковым центром регуляции кишечного пищеварения служит гипоталамус. Раздражителем хеморецепторов гипоталамуса является «голодная» кровь. Гипоталамус может удовлетворить потребности, диктуемые «голодной» кровью, за счет внутренних ресурсов организма. Такие ресурсы имеются в жировых и углеводных депо. Истощение этих ресурсов сопровождается формированием пищевой доминанты. В реальной жизни прием пищи происходит задолго до истощения пищевых ресурсов в организме.

29. Водно-солевой, белковый, живовой и углеводный обмен

Пополнение тела водой происходит постоянно за счет всасывания ее из пищеварительного тракта. Человеку нужно в сутки 2-2,5 л воды при нормальном пищевом режиме и нормальной температуре окружающей среды. Это количество воды поступает из следующих источников: 1) воды, потребляемой при питье (около 1 л); 2) воды, содержащейся в пище (около 1 л) ; 3) воды, которая образуется в организме при обмене белков, жиров и углеводов (300-350 см куб). Почками за сутки из организма удаляется 1,2-1,5 л воды в составе мочи. Потовыми железами через кожу в виде пота удаляется 500-700 см куб воды в сутки. При нормальной температуре и влажности воздуха на 1 см кв. кожного покрова каждые 10 мин выделяется около 1 мг воды. Легкими в виде водяных паров выводится 350 см куб воды. Это кол-во резко возрастает при углублении и учащении дыхания, и за сутки тогда может выделиться 700-800 см куб воды. Через кишечник с калом выводится в сутки 100-150 см куб. воды. Если воды выводится из организма больше, чем поступает в него, возникает чувство жажды.

Отношение количества потребленной воды к количеству выделенной составляет водный баланс. Все превращения веществ в организме совершаются в водной среде. Вода растворяет пищевые вещества, поступившие в организм. Вместе с минеральными веществами она принимает участие в построении клеток и во многих реакциях обмена. Вода участвует в регуляции температуры тела; испаряясь, она охлаждает тело, предохраняя его от перегрева; транспортирует растворенные вещества. Вода и минеральные соли создают в основном внутреннюю среду организма, являясь основной составной частью плазмы крови, лимфы и тканевой жидкости. Некоторые соли, растворенные в жидкой части крови, участвуют в переносе газов кровью. Вода и минеральные соли входят в состав пищеварительных соков, что во многом определяет их значение для процессов пищеварения. И хотя ни вода. ни минеральные соли не являются источниками энергии в организме. Нормальное поступление и выведение их из организма является условием его нормальной деятельности. Достаточно сказать, что вода у взрослого человека составляет примерно 65% массы тела, а у детей – около 80%. Потеря организмом воды приводит к очень тяжелым нарушениям. Например, при расстройстве пищеварения у грудных детей самым опасным является обезвоживание организма. что влечет за собой судороги, потерю сознания.

Лишение человека воды на несколько дней смертельно. Белки входят в состав цитоплазмы, гемоглобина, плазмы крови, многих гормонов, иммунных тел, поддерживают постоянство водно-солевой среды организма. Без белков нет роста. Ферменты, обязательно участвующие во всех этапах обмена веществ, – белки. Аминокислоты, идущие на построение белков организма неравноценны. Некоторые аминокислоты (лейцин, метионин, фенилаланин и др.) незаменимы для организма. Если в пище отсутствует незаменимая аминокислота, то синтез белков в организме резко нарушается. Но есть аминокислоты, которые могут быть заменены другими или синтезированы в самом организме в процессе обмена веществ. Это заменимые аминокислоты. Белки пищи, содержащие весь необходимый набор аминокислот для нормального синтеза белка организма, называют полноценными. К ним относят преимущественно животные белки. Белки пищи, не содержащие всех необходимых для синтеза белка организма аминокислот, называют неполноценными (например, желатин, белок кукурузы, белок пшеницы). Наиболее высокая биологическая ценность – у белков яиц, мяса, молока, рыбы. При смешанном питании, когда в пище есть продукты животного и растительного происхождения, в организм обычно доставляется необходимый для синтеза белков набор аминокислот. Особенно важно поступление всех незаменимых аминокислот для растущего организма.

Отсутствие в пище аминокислоты лизина приводит к задержке роста ребенка, к истощению его мышечной системы. Недостаток валина вызывает расстройство равновесия у детей. В настоящее время достаточно изучен аминокислотный состав белков различных органов и тканей человека и пищевых продуктов. Поэтому имеется возможность так комбинировать продукты питания, чтобы человек получал в пищевом рационе все жизненно необходимые аминокислоты в нужных количествах и сочетаниях. Из питательных веществ только в состав белков входит азот. Поэтому о количественной стороне белкового питания можно судить по азотистому балансу. Азотистый баланс – соотношение количества азота, поступившего в течение суток с пищей, и азота, выделенного за сутки из организма с мочой. Калом и потом в результате распада белка. Те аминокислоты, которые не пошли на синтез специфических белков, подвергаются превращениям, во время которых освобождаются азотистые вещества. От аминокислоты при этих превращениях отщепляется азот в виде аммиака. Азот в виде аминогруппы, отщепившись от одной аминокислоты, может переноситься на другую, и тогда в организме строятся недостающие ему аминокислоты. Эти процессы идут преимущественно в печени, мышцах, почках.

Безазотистый остаток аминокислоты подвергается дальнейшим превращениям с образованием углекислого газа и воды. Аммиак, образовавшийся при распаде белков в организме (вещество ядовитое) обезвреживается в печени, где превращается в мочевину; последняя в составе мочи выводится из организма. Конечные продукты распада белков в организме – не только мочевина, но и мочевая кислота и другие азотистые вещества. Они выводятся из организма с мочой и потом. Поступивший с пищей жир в пищеварительном тракте расщепляется на глицерин и жирные кислоты, которые всасываются в основном в лимфу и лишь частично в кровь. Через лимфатическую и кровеносную системы жиры поступают главным образом в жировую ткань, которая имеет для организма значение депо жира. Много жира в подкожной клетчатке, вокруг некоторых внутренних органов (например, почек), а также в печени и мышцах.

Жиры входят в состав клеток (цитоплазма, ядро, клеточные мембраны), где их количество устойчиво постоянно. Скопления жира могут выполнять и другие функции. Например, подкожный жир препятствует усиленной отдаче тепла, околопочечный жир предохраняет мочку от ушибов и т.д. Жир используется организмом как богатый источник энергии. При распаде 1 г жира в организма освобождается энергии в два с лишним раза больше, чем при распаде такого же количества белков или углеводов. Недостаток жиров в пище нарушает деятельности центральной нервной системы и органов размножения, снижает выносливость к различным заболеваниям. Жир синтезируется в организме не только из глицерина и жирных кислот, но и из продуктов обмена белков и углеводов. Некоторые непредельные жирные кислоты, необходимые организму (линолевая, линоленовая и арахидоновая), должны поступать в организм в готовом виде, так как он не способен их синтезировать. Они содержатся в растительных маслах, больше в льняном и конопляном масле, но много линолевой кислоты и в подсолнечном масле. Этим объясняется высокая питательная ценность маргарина, в котором содержится значительное количество растительных жиров. С жирами в организм поступают растворимые в них витамины (А,Д,Е и др.), имеющие для человека жизненно важное значение. На 1кг массы взрослого человека в сутки должно поступать с пищей 1,25 г жиров (80-100 г в сутки).

Конечные продукты обмена жиров углекислый газ и вода. В течение жизни человек съедает около 10 т углеводов. Они поступают в организм главным образом в виде крахмала. Расщепившись в пищеварительном тракте до глюкозы, углеводы всасываются в кровь и усваиваются клетками. Особенно богата углеводами растительная пища: хлеб, крупы, овощи, фрукты. Продукты животного происхождения (за исключением молока) содержат мало углеводов. Углеводы – главный источник энергии, особенно при усиленной мышечной работе. У взрослых людей больше половины энергии организм получает за счет углеводов. Распад углеводов с освобождением энергии может идти как в бескислородных условиях, так и в присутствии кислорода. Конечные продукты обмена углеводов – углекислый газ и вода. Углеводы обладают способностью быстро распадаться и окисляться. При сильном утомлении, во время трудных спортивных состязаний прием нескольких кусочков сахара улучшает состояние организма. В крови количество глюкозы поддерживается на относительно постоянном уровне (около 110 мг %). Уменьшение содержания глюкозы вызывает понижение температуры тела расстройство деятельности нервной системы, утомление. В поддержании постоянного уровня сахара в крови большую роль играет печень.

Повышение количества глюкозы вызывает ее отложение в печени в виде запасного животного крахмала – гликогена. Гликоген мобилизуется печень. При снижении содержания сахара в крови. Гликоген образуется не только в печени, но и в мышцах, где его может накапливаться до 1-2%. Запасы гликогена в печени достигают 150г. При голодании и мышечной работе эти запасы сокращаются. Если содержание глюкозы в крови увеличивается до 0,17%, то она выводится из организма с мочой. Обычно это происходит при употреблении с пищей большого количества углеводов. Тем самым содержание сахара в крови выравнивается. Однако в крови может быть и стойкое повышение содержания сахара. Это происходит при нарушении функции желез внутренней секреции (главным образом поджелудочной), что приводит к развитию сахарного диабета. При этом заболевании утрачивается способность тканей усваивать сахар, а также превращать его в гликоген и откладывать в печени. Поэтому уровень сахара в крови постоянно повышен, что вызывает усиленное выделение его с мочой. Значение глюкозы для организма не исчерпывается ее ролью как источника энергии. Она входит в состав цитоплазмы и, следовательно, необходима для образования новых клеток, особенно в период роста. Входят углеводы и в состав нуклеиновых кислот. Углеводы имеют важное значение и в обмене веществ в центральной нервной системе. При резком снижении кол-ва сахара в крови отмечаются резкие расстройства деятельности нервной системы. Наступают судороги, бред, потеря сознания, изменение деятельности сердца. Если такому человеку ввести в кровь глюкозу или дать съесть обычный сахар, то через некоторое время эти тяжелые симптомы исчезают.

Полностью сахар из крови не исчезает даже при отсутствии его в пище. Так как в организме углеводы могут образовываться из белков и жиров. Потребность в глюкозе различных органов неодинакова. Мозг задерживает до 12% приносимой глюкозы, кишечник – 9%, мышцы -7%, почки – 5%. Селезенка и легкие почти совсем ее не задерживают. Процессы обмена веществ, или метаболизм, тонко согласованы друг с другом, протекают в определенной последовательности. Совокупность реакций биологического синтеза, требующих затрат энергии, называют анаболизмом. К анаболическим процессам относятся биологический синтез белков, жиров, липоидов, нуклеиновых кислот. За счет этих реакций сравнительно простые вещества, поступая в клетки, с участием ферментов превращаются в вещества самого организма. Анаболизм создает основу для непрерывного обновления износившихся структур. Энергия для анаболических процессов поставляется реакциями катаболизма, при которых происходит расщепление молекул сложных органических веществ с освобождением энергии. Конечные продукты катаболизма – вода, углекислый газ, аммиак, мочевина, мочевая кислота и др. – недоступны для дальнейшего биологического окисления в клетке и удаляются из организма.

Процессы анаболизма и катаболизма неразрывно связаны. Катаболические процессы поставляют для анаболизма энергию и исходные вещества; анаболические процессы приводят к построению структур, идущих на восстановление отмирающих клеток, формирование новых тканей в связи с процессами роста организма. Для синтеза гормонов, ферментов и других соединений, необходимых для жизнедеятельности клетки, а также поставляют для реакций катаболизма подлежащие расщеплению макромолекулы. Все процессы метаболизма катализируются и регулируются ферментами – веществами белковой природы. Ферменты являются теми биологическими катализаторами, которые «запускают» реакции в клетках организма.

30. Выделительная система

Подразделяется на мочеобразующую (почки) и мочевыводящие пути (почечные чашечки, лоханки, мочеточники, мочевой пузырь, мочевыводящий канал). Функции почек: экзо- и эндокринные. Вес каждой почки 150 г. За сутки почки обрабатывают до 1700 л крови. По интенсивности, кровообращение превосходит все другие органы в 20 раз. Каждый 5-10 минут в почках вся масса крови. Важнейшая функция – удаление продуктов, которые не усваиваются организмом (азотистых шлаков). Почки являются чистилищем крови. Мочевина, мочевая кислота, креатинин – концентрация этих веществ значительно выше, чем в крови. Без выделительной функции было бы неизбежное отравление организма. Обеспечение гомеостаза организма и крови. Осуществляется регуляцией количества воды и солей – поддержание водно-солевого баланса. Регулируют кислотно-щелочное равновесия, содержание электролитов. Почки препятствуют превышению нормы количества воды, адаптируются к изменяющимся условиям. В зависимости от потребностей организма могут изменять показатель кислотности от 4.4 до 6.8 рН. Эндокринная. Синтезируют ренин и простогландины. Регуляция кроветворения. Стимулируют образование в плазме эритропоэтина. Обезвреживают ядовитые вещества в случае выхода из строя печени. При нарушении работы почек возникают уремия, ацидоз, отеки и т.д.

ЭМБРИОНАЛЬНОЕ РАЗВИТИЕ.

Три этапа. Последовательно закладываются 3 парных органа:

  • Предпочка – pronephros (предпочка)
  • Первичная почка – mesonephros (вольфово тело).
  • Окончательная почка – metanephros.

Источник развития – нефротом. Предпочка образуется из 8-10 сегментов ножек, соответствующих головному концу зародыша. Затем они превращаются в извитые канальцы, которые формируют мезонефральный проток. Предпочка существует 40 часов и не функционирует. Первичная почка образуется из 25 сегментов ножек. Они отделяются от сомита и подрастают к растущему вниз мезонефральному протоку. С другого конца к ним подрастают приносящие артериолы от аорты и формируются почечные тельца. К 4-5 месяцу первичная почка прекращает существовать. Со 2-го месяца происходит дифференцировка постоянной почки. Образуется из 2 источников: нефрогенный зачаток – нерасчлененный на сегменты ножки участок мезодермы, который находится в каудальной части зародыша. Из него формируются нефроны. Мезонефральный проток – дает начало собирательным трубочкам, сосочковым канальцам, чашечкам, лоханкам, мочеточникам. Строение почки. С периферии покрыта соединительнотканной оболочкой (капсулой). Спереди – висцеральным листком брюшины. Состоит из 2-х частей: корковое и мозговое вещество. Мозговое вещество разделено на 8-12 пирамид, заканчивающихся сосочковыми канальцами, открывающимися в чашечки. Корковое вещество проникая в мозговое, образует пирамидки. В свою очередь, мозговое вещество проникая в корковое, образует лучи. Структурно-функциональная единица – нефрон (более 1 млн). Длина его 15-150 мм, общая до 150 км.

Образован капсулой клубочка, состоящей из висцерального и париетального листка; проксимальным отделом – извитая и прямая части; нисходящим отделом петли; дистальным отделом – извитая и прямая части. Дистальный отдел впадает в собирательную трубочку, которая в нефрон не входит. Есть 2 типа нефронов: корковые (80%, из которых лишь 1% истинно корковые) и околомозговые (юкстамедулярные – 20%).Корковые нефроны – почечные тельца и проксимальные отделы в корковом веществе, а петля, прямые канальцы – в мозговом веществе. Юкстамедулярные нефроны расположены на границе. Петля полностью в корковом веществе. Корковое вещество образовано почечными тельцами, проксимальными и дистальными отделами. Мозговое вещество – петля и собирательные трубочки. В почке выделяют доли, число которых соответствует количеству пирамид. Доля – пирамида мозгового вещества с примыкающими корковым. Еще выделяют дольки. Соответствуют частям органа, в которых все нефроны открываются в одну собирательную трубку. По периферии проходят междольковые артерии и вены.

КРОВОСНАБЖЕНИЕ. Своеобразное. Связано с наличием 2 типов нефронов. Почечная артерия – долевые артерии – дуговые артерии (между корковым и мозговым веществом) – междольковые артерии – внутридольковая артерия – приносящая артериола – первичная гемокапиллярная сеть (в корковом нефроне) – выносящая артериола (ее диаметр больше) – вторичная гемокапиллярная сеть. Первичная сеть называется чудесной сетью, вторичная оплетает все канальцы (реабсорбция). Затем венозная сеть, звездчатая вена – междольковые вены – дуговые вены – долевые вены – почечная вена. В мозговом нефроне диаметр приносящей и выносящей артериол одинаков. Часть крови сбрасывается в прямые венулы – дуговые вены – долевые вены – почечная вена. Мозговой нефрон принимает участие в мочеобразовании при физической нагрузке.

ГИСТОФИЗИОЛОГИЯ НЕФРОНА. В мочеобразовании выделяют 3 этапа: фильтрация, реабсорбция (облигатная и факультативная), секреция (подкисление мочи).

ФИЛЬТРАЦИЯ. Совершается в почечных тельцах. Они овальной формы, диаметр 150-200 мкм. Состоят из сосудистого клубочка и 2 листков капсулы (внутреннего, наружного). Между ними полость, куда и поступает первичная моча (ультрафильтрат). В сосудистом клубочке примерно 50 капилляров, которые выстланы фенестрирующими эндотелиоцитами и образуют анастомозы. В эндотелиоцитах имеются поры, большая часть которых не прикрыта диафрагмой (напоминают сито). Снаружи расположена базальная мембрана, которая является общей с эпителием внутреннего листка капсулы. Состоит из 3-х слоев: периферийные менее плотные, центральный плотный. В образовании принимают участие эпителиоциты внутреннего листка капсулы, которая в течении 1 года полностью меняется. Клетки внутреннего листка капсулы имеют отростки 0 цитотрабекулы, цитоподии, которые плотно контактируют с базальной мембраной. Здесь находится фильтрационный барьер: пористые эндотелиоциты базальная мембрана подоциты он обладает избирательной проницаемостью. В почечном тельце расположены мезангиоциты. Синтезируют межклеточное вещество, участвуют в иммунных реакциях, выполняют эндокринную функцию (выработка ренина). Наружный листок капсулы образован плоскими нефроцитами. Между 2 листками полость, куда и поступает первичная моча (170 литров в сутки). Фильтрационный барьер проницаем для воды, глюкозы, солей натрия, калия, фосфора, низкомолекулярных белков (альбумины), шлаковых веществ. Не проходят: форменные элементы крови, белки с высоким молекулярным весом (фибриноген, иммунные тела). Фильтрация происходит вследствие высокого давления из-за разности диаметров выносящей и приносящей артериол.

РЕАБСОРБЦИЯ. Происходит в околоканальцевом пространстве, а затем в сосудах. Начинается с проксимального отдела нефрона, который образован однослойным кубическим эпителием. Просвет неровный, выстлан щеточной каемкой. С противоположной стороны клеток – базальная исчерченность (складки цитолеммы, митохондрии). Здесь происходит облигатная реабсорбция глюкозы, 85% воды, 85% солей, белков (поглощаются на апикальной поверхности клеток путем пиноцитоза. Пиноцитозные пузырьки сливаются с лизосомами, где белок расщепляется до аминокислот и поступает в цитоплазму и далее в кровь). На поверхности щеточной каемки – щелочная фосфатаза – реабсорбция глюкозы. При повышении уровня глюкозы в крови она реабсорбируется неполностью. Реабсорбция электролитов и воды связана со складками базальной плазмолеммы и митохондриями. Происходит пассивно. Нефроциты проксимального отдела выполняют экскреторную функцию (продукты обмена, красители, лекарства). Дальше в петле нефрона – факультативная реабсорбция. Тонкая часть петли образована однослойными плоским эпителием. На внутренней поверхности с базальной стороны – складки цитолеммы. На поверхности небольшое количество микроворсинок. Продолжается реабсорбция воды. В нижней части петли раствор становится гипертоническим. Когда жидкость поднимается вверх по петле – выкачивается натрий. Это участок водонепроницаем. Раствор становится изотоническим. Он приходит в дистальную часть в прямой отдел. Эпителий однослойный, кубический. С базальной стороны – исчерченность (митохондрии, складки). Здесь продолжается реабсорбция натрия. Раствор становится гипотоническим. В окружающих тканях – гипертонический раствор. Реабсорбции натрия способствуют гормона альдостерон. В собирательные трубочки поступает гипотонический раствор. Происходи реабсорбция воды, чему способствует антидиуретический гормон. При его отсутствии стенка собирательной трубочки непроницаема для воды – выделяется очень много мочи из организма. Собирательные трубки образованы однослойным кубическим, призматическим эпителием 2 типа клеток – светлые и темные. Светлые выполняют эндокринную функцию (простогландины) и реабсорбция воды. В темных клетках происходит подкисление мочи.

ЭНДОКРИННАЯ СИСТЕМА. Выделяют 2 аппарата: рениновый и простогландиновый. ЮГА (юкстагломерулярный аппарат). В ЮГА выделяют 4 компонента: ЮГ-клетки приносящей артериолы. Это видоизмененные мышечные клетки, секретирующие ренин. Клетки плотного пятна дистального отдела нефрона. Эпителий призматический, базальная мембрана истончена, количество клеток большое. Это рецептор натрия. Юкставаскулярные клетки. Находятся в треугольном пространстве . между приносящей и выносящей артериолами. Мезангиоциты. Способны вырабатывать ренин при истощении ЮГ-клеток. Регуляция ренинового аппарата осуществляется: при понижении кровяного давления приносящие артериолы не растягиваются (ЮГ-клетки являются барорецепторами) – усиление секреции ренина. Они действует на глобулин плазмы, который синтезируется в печени. Образуется ангиотензин-1, состоящий из 10 аминокислот. В плазме крови от него отделяются 2 аминокислоты и образуется ангиотензин-2, который и обладает сосудосуживающим действием. Его эффект двоякий: непосредственно действует на артериолы, сокращая гладкомышечную ткань – повышение давления. Стимулирует кору надпочечников (выработку альдостерона). Воздействует на дистальные отделы нефрона, задерживает натрий в организме. Все это ведет к повышению кровяного давления. ЮГА может вызвать стойкое повышение АД, вырабатывает вещество, которое в плазме крови превращается в эритропоэтин. Простогландины. Представлены: интерстициальные клетки мозгового вещества. Это отросчатые клетки. Светлые клетки собирательных трубочек. Простогландины обладают антигипертензивным действием. Антагонисты ренина. Клетки почки извлекают из крови образующийся в печени про-гормон витамина Д3, который превращается в витамин Д3, который стимулирует всасывание кальция и фосфора. Физиология почек зависит от функционирования мочевыводящих путей. При нарушении их проводимости – почечные колики.

МОЧЕОТВОДЯЩИЕ ПУТИ. Состоят из 4 оболочек: слизистая неполного типа образована переходным эпителием и собственной пластинкойподслизистый слоймышечная оболочка (2-х, 3-х слойная: внутренний, наружный слой – продольные, средний – циркулярный) наружная оболочка – адвентициальная. Есть участки, которые образованы серозной оболочкой.

Железы внутренней секреции, гормоны которых поступают непосредственно в кровь и действуют дистантно на удаленные от них органы и ткани, а также системой эндокринных тканей других органов; 2) системой местной саморегуляции, т. е. действием на соседние клетки (в пределах одного органа или ткани) биологически активных веществ (тканевых «гормонов»—гистамина, серотомина, кининов, простагландинов) и продуктов клеточного метаболизма (например, появление при физических нагрузках молочной кислоты в мышцах ведет к расширению в них кровеносных сосудов и увеличению доставки кислорода). К эндокринным железам относят следующие железы: эпифиз (верхний придаток мозга или шишковидная железа), гипофиз (нижний придаток мозга), вилочковая железа (тимус или зобная железа), щитовидная (тиреоидная) железа, околощитовидные (паратирсоидные) железы, поджелудочная железа (панкреас), надпочечники, половые железы (гонады). Гормоны выделяются также клетками некоторых органов (почки, сердце, плацента, пищеварительный факт).

Методами изучения желез внутренней секреции являются традиционные методы удаления или разрушения (у человека при заболеваниях или у животных в эксперименте), введение определенного гормона в организм, а также наблюдения в клинике за больными с патологией эндокринной системы. В современных условиях концентрацию гормонов в железах, крови или моче изучают биологическими ихимическими методами, используют ультразвуковое исследований применяют радиоиммунологический метод. Общими свойствами желез внутренней секреции является отсутствие внешних протоков в отличие от желез внешней секреции, имеющих такие протоки (например, сальных, молочная слюнных и др.); продуцируемые эндокринными железами гормоны всасываются непосредственно в кровь, проходящую через железу.

Сравнительно небольшие размеры и вес. Действие гормонов на клетки и ткани в весьма малых концентрациях (например, всего 1 г адреналина может активизировать 1 млн. лягушачьих сердец). Избирательность действия гормонов на определенные ткани клетки-мишени, имеющие специальные рецепторы на поверхности клеточной мембраны или в плазме, с которыми связываются гормоны. Специфичность вызываемых ими функциональных эффектов. Быстрое разрушение гормонов (например, период полураспада крови адреналина и норадреналина — около 0.5-2.5 мин, большей части гормонов гипофиза —10-15 мин). Эндокринные железы должны постоянно вырабатывать гормоны, чтобы, несмотря на быстрое разрушение, поддерживать необходимую их концентрацию в крови. Сохранение нормального уровня каждого гормона и их соотношений в организме регулируется особь! ми нервными и гуморальными механизмами отрицательной обрат ной связи: при избытке в крови какого-либо гормона или образуема под его воздействием веществ секреция этого гормона соответствует щей железой снижается, а при недостатке — увеличивается. Нарушения деятельности эндокринных желез могут проявляться в их чрезмерной активности — гиперфункции или ослаблении активности— гипофункции, что приводит к снижению работоспособности, различным патологиям в организме и даже смерти. 1 Гормонами называют особые химические вещества, выделяемые специализированными эндокринными клетками и обладающими дистантным действием, с помощью которых осуществляется гуморальная регуляция функций различных органов и тканей организма. По химической структуре выделяют 3 группы гормонов:

  • Стероидные гормоны — половые гормоны и кортикостероидные гормоны надпочечников;
  • Производные аминокислот — гормоны мозгового вещества надпочечников (адреналин, норадреналин), щитовидной железы.
  • Пептидные гормоны—гормоны гипофиза, поджелудочной железы, околощитовидных желез, а также гипоталамические нейрапептиды.

Функции гормонов заключаются в изменении обмена веществ в тканях (метаболическое действие), активации генетического аппарата, регулирующего рост и формообразование различных органов тела, запуске различных функций (например, выделение из печени глюкозы в кровь при работе), модуляции текущей активности различных органов (например, изменения частоты сердцебиений при эмоциональных состояниях организма). Механизм влияния гормонов на клеточную активность зависит от их способности связываться с рецепторами клеток-мишеней. Влияние пептидных гормонов и производных аминокислот осуществляется путем их связывания со специфическими рецепторами на поверхности клеточных мембран, что вызывает цепную реакцию биохимических преобразований в клетках.

Стероидные гормоны и гормоны щитовидной железы, обладающие способностью проникнуть через клеточную мембрану, образуют в цитоплазме комплекс со специфическими рецепторами, который проникает в клеточное ядро и морфогенетические эффекты образования ферментов и видоспецифичных белков, а также усиление энергообразования в митохондриях, транспорта глюкозы и аминокислот и другие изменения в жизнедеятельности клеток. В клетках-мишенях имеются механизмы для саморегуляции собогненных реакций на гормональные воздействия. При избытке молекул гормона уменьшается число свободных рецепторов клетки для их связывания, и тем самым снижается чувствительность клетки к действию гормона, а при недостатке гормонов — увеличение числа свободных рецепторов повышает клеточную восприимчивость. Почти для всех гормонов выявлены отчетливые суточные колебания их содержания в крови. Большей частью происходит увеличение их концентрации в дневное время и уменьшение в ночное время. Однако в этой периодике имеются специфические особенности — тик, максимальное содержание гормона роста в крови наблюдается поздним вечером, в начальные стадии сна, а гормонов надпочечников глюкокортикоидов—в утренние часы

 

А Вам помог наш сайт? Мы будем рады если Вы оставите несколько хороших слов о нас.
Категории
Рекомендации
Можно выбрать
Интересное
А знаете ли вы, что нажав сочетание клавиш Ctrl+F - можно воспользоваться поиском по сайту?
X
Copyrights © 2015: FARMF.RU - тесты, лекции, обзоры
Яндекс.Метрика
Рейтинг@Mail.ru

Пожалуйста поддержите наш сайт.

Скроее всего Вы знаете, что Google приостановил монетизацию сайтов в РФ. Для поддержки нашего сайта пожалуйста используйте VPN соединение из любой страны кроме РФ. Нам важна Ваша помощь для продолжения публикации новых лекций и статей.