КОНЦЕПЦИЯ САМООРГАНИЗАЦИИ И БИОЛОГИЧЕСКОЙ ЭВОЛЮЦИИ. ФИЛОГЕНЕЗ
Концепции современного естествознания. Биология. — Анисимов А.П.
- Проблема самоорганизации и наука синергетика
- Возникновение жизни на земле
- Этапы развития жизни на земле и современное биоразнообразие
- Факторы биологической эволюции. Филогенез
- Происхождение и эволюция человека
ПРОБЛЕМА САМООРГАНИЗАЦИИ И НАУКА СИНЕРГЕТИКА
В предыдущей теме, рассматривая закономерности и механизмы саморегуляции живых систем, мы вынуждены были затронуть и проблему самоорганизации. Несмотря на созвучность терминов и их кажущуюся однозначность, на самом деле они выражают альтернативные понятия. Как мы только что показали на примере экологических систем, саморегуляция означает поддержание стабильного состояния системы, ее гомеостаз на основе обратных отрицательных связей, тогда как самоорганизация — это необратимое изменение, развитие системы на основе обратных положительных связей. В соответствии с законами диалектики эти две противоположности взаимодействуют, дополняют друг друга, так что вместе обеспечивают процесс устойчивого развития биосистем.
В этой теме мы должны более основательно рассмотреть вопросы происхождения и исторического развития жизни на Земле, эволюцию живых форм, причины и движущие силы этих глобальных процессов. Ключевым понятием в проблеме эволюции сегодня выступает понятие самоорганизации как основы любого процесса развития. В кругу этих проблем на стыке интересов физики, химии, биологии, а также социологии и философии во второй половине XX века возникла новая наука синергетика (от греческого synergos — совместно действующий) — наука о самоорганизации физических, биологических и социальных систем.
До недавнего времени проблема эволюции жизни оставалась чисто биологической, так как еще в XIX веке эволюция в неживых системах понималась физиками иначе, чем в биологии. Обращаясь с системами закрытого типа, теплофизика считала, что их самопроизвольное изменение, то есть эволюция, протекает путем дезорганизации и разрушения систем. При этом доля свободной энергии, способной к совершению работы, в системе убывает, а энтропия системы — деградированная, отработанная энергия — растет и стремится к максимальному значению. Этот закон был сформулирован как второе начало термодинамики. Однако оказалось, что реальные системы в природе являются открытыми. Это означает, что они обмениваются с внешней средой веществом, энергией и информацией. При поглощении внешней энергии в них возникают процессы самоорганизации, усложнения материи, но при этом происходит диссипация (рассеяние) использованной энергии, которая становится непригодной к производству работы. Можно сказать, что открытая развивающаяся система производит энтропию, но не накапливает ее, а рассеивает во внешнюю среду. Таким образом, интерес ученых сместился к изучению открытых диссипативных систем и принципов их взаимодействия с внешней средой, так как в этом взаимодействии и виделся ключ к пониманию универсальных законов эволюции.
Диссипативные системы — способные к поглощению и диссипации энергии и поддерживающие за этот счет свою собственную структуру и самоорганизацию — существуют на разный уровнях организации материи. Мы уже видели это на примере жизнедеятельности элементарной живой системы — клетки. За счет солнечной энергии или энергии экзотермических химических реакций клетка строит из простых неорганических веществ сложные органические вещества, поддерживает свою целостность и развитие, тем самым противодействуя росту энтропии.
Оказалось, что диссипативные процессы самоорганизации происходят и в неживой природе. В 60-70-е годы XX века физиками открыты кооперативные резонансные процессы элементарных частиц в лазере, происходящие под действием внешнего света, а в химии открыты колебательные реакции, идущие по принципу «химических часов». Причем движущей силой самоорганизующихся реакций, пружиной химических часов может выступать такая незаметная на первый взгляд сила, как гравитационное поле Земли. Колебательная химическая система, названная брюсселятором, изучена отечественными учеными радиохимиком Б. П. Белоусовым и биофизиком А. М. Жаботинским. При свободном поступлении в такую систему химических субстратов и при наличии в ней катализаторов происходит реакция, продукты которой удаляются, освобождая место для поступления новой порции субстрата. Реакция идет по замкнутому циклу и в результате изменения концентрации реагирующих веществ сопровождается образованием характерных пространственных структур — в виде расходящихся колец на реакционной поверхности. Создается впечатление пульсирующей, «живущей» химической системы.
Теоретическое объяснение и математическую модель процессов самоорганизации диссипативных структур предложил бельгийский физико-химик И. Р. Пригожин, получивший в 1977 г. за эту работу Нобелевскую премию. Назовем основные положения синергетики, объясняющие механизм самоорганизующихся процессов. С некоторыми из них мы уже хорошо знакомы.
1. Самоорганизующаяся система должна быть открытой — доступной для обмена веществом, энергией и информацией с внешней средой.
2. Система должна быть неравновесной, то есть находиться достаточно далеко от точки термодинамического равновесия (точка дезорганизации с максимальной энтропией), так как вблизи этой точки наступает необратимое скатывание к равновесному состоянию.
3. Образование нового порядка через флуктуации. В системе всегда возникают флуктуации — случайные отклонения от среднего положения. По законам саморегуляции они устраняются, но при достаточной неравновесности системы за счет свободной энергии отклонения усиливаются, наступает момент бифуркации — переломная точка в развитии системы, за которой возможно устойчивое отклонение от прежнего состояния. Прежний порядок исчезает, возникает и закрепляется новый порядок элементов в системе.
4. Самоорганизация ведет к новому порядку согласно принципу
обратной положительной связи, по которому отклонения в системе не устраняются, а напротив, закрепляются и усиливаются.
5. Самоорганизация ведет к нарушению симметрии — структура и
свойства системы до и после точки бифуркации не симметричны, то есть различаются в следствие необратимости процессов развития.
6. Самоорганизация возможна при некотором критическом количестве элементов в системе, достаточном для возникновения их кооперативного поведения. Путь к новому качеству возможен через изменение количества.
Разумеется, здесь приведены лишь самые необходимые условия самоорганизации. В зависимости от уровня сложности развивающихся систем, могут появляться и другие, частные факторы, необходимые и достаточные для полноценной эволюции. Наша дальнейшая задача — найти эти факторы в процессах исторического развития жизни на Земле. И первый вопрос — о происхождении жизни как таковой.
ВОЗНИКНОВЕНИЕ ЖИЗНИ НА ЗЕМЛЕ
От античных времен до средних веков многие философы и ученые считали, что живые организмы могут возникать из неживой материи. Но эта принципиально важная мысль не получала доказательств. Представления о происхождении лягушек и рыб из ила, а мух из гнилого мяса были опровергнуты в 1661 г. итальянским врачом Франческо Реди, который в простых опытах показал, что мухи возникают не из мяса, а из яиц, отложенных в мясо другими мухами. Через 200 лет выдающийся французский микробиолог Луи Пастер поставил точку в спорах о самозарождении жизни, доказав, что даже микробы — мельчайшие свободноживущие клетки — не могут возникать из мертвой, прокипяченной питательной среды. При этом Пастер убедил даже виталистов, которые считали, что для возникновения жизни нужна особая «жизненная сила». Он придумал знаменитую колбу с длинным S-образным горлышком, в которой после кипячения бульона, несмотря на то, что горлышко оставалось открытым и доступным для «жизненной силы», микробы тем не менее не заводились. В 1862 г. Пастер по этому поводу выиграл специальную премию Французской академии наук, объявленную тому, кто разрешит проблему самозарождения жизни. Восторжествовал закон: все живое — от живого. Но значило ли это, что жизнь не могла зародиться на Земле из неживого субстрата в доисторические времена, когда еще не было никаких организмов, да и состав земной поверхности, вероятно, был другим, нежели в современную эпоху? Тогда откуда и как появились первые живые существа, хотя бы те же бактерии? Убедительного ответа на этот вопрос нет до сих пор, хотя имеются более или менее обоснованные гипотезы.
Так называемая «гипотеза» креационизма — о сотворении жизни сверхъестественным, божественным существом — не имеет никаких доказательств. Она основана на вере и является по сути не научной, а религиозной идеей, поэтому нами рассматриваться не будет.
Более интересна гипотеза вечности жизни, которая в представлениях шведского физико-химика конца XIX века Аррениуса известна как теория панспермии (от греческих pan — всеохватывающий и sperma — семя). Согласно этой гипотезе жизнь всегда присутствует в космосе в виде мельчайших спор микроорганизмов, которые мигрируют между планетами, галактиками в составе комет, метеоритов и других космических тел, пересекающих большие пространства. Когда-то жизнь попала и на Землю, а потом развивалась, совершенствовалась. Выполнен ряд работ с метеоритными телами, в которых найдены органические вещества (аминокислоты, спирты, углеводороды), а также мельчайшие замурованные пузырьки, похожие на отпечатки клеток или спор. В некоторых метеоритах, упавших на Землю в 40-50-х годах и недавно извлеченных, найдены даже бактерии. Кроме того, астрофизики на основании спектральных анализов удаленных космических тел утверждают, что и в космосе присутствуют органические вещества; особенно много их в кометах. Однако, все эти наблюдения не являются доказательствами присутствия жизни. Органическое вещество — соединения на основе углерода — вполне может быть неживого происхождения, пузырьки в метеоритах скорее всего были заполнены газами, а встречаемые в метеоритных останках бактерии, очевидно, проросли за десятилетия из почвы. В космосе ни вирусы, ни бактерии пока что не обнаружены. К таким выводам сходится большинство ученых, озабоченных проблемой происхождения жизни.
Для полноты картины добавим, что существует еще теория направленной панспермии, согласно которой жизнь в виде простейших организмов на Землю занесли инопланетяне, опередившие нас по уровню развития на миллиарды лет. Эта идея подогревается наблюдениями различных НЛО, спекуляциями по поводу падающих «летающих тарелок» и захваченных, но утаиваемых от общественности, инопланетян. Оставим эти домыслы журналистам и досужим обывателям, поскольку в научной среде факты о посещении Земли какими-либо существами отсутствуют.
Даже если жизнь «вечна» и на Землю попала из космоса, остается вопрос о происхождении первых организмов — где бы и когда бы они не возникли. Поскольку современные космологические теории, в частности теория большого взрыва, выводят Вселенную из материального хаоса, ни о каком присутствии в Космосе живых организмов до появления Вселенной не может быть и речи. Поэтому обратимся к тем гипотезам, которые объясняют абиогенное возникновение жизни из первичных неорганических субстратов, причем ни где-нибудь в космических далях, о которых мы мало что знаем, а у нас на Земле.
Исходя из макромолекулярной специфики живой материи — как помним, ее основу составляют белки и нуклеиновые кислоты — любая теория абиогенного (не из живого) возникновения жизни в первую очередь должна объяснить происхождение этих сложных нерегулярных полимеров и, более того, предложить механизм возникновения генетического кодирования первичной структуры белков через структуру ДНК и РНК (см. центральную догму молекулярной биологии — сегмент 22). Кроме того, надо понять как возникли липидные мембраны и тогда несложно прийти к формированию протоклеток — простейших комочков живой плазмы, ограниченных мембраной. В современной биологии сложилось два подхода к объяснению этих механизмов и соответственно две модели абиогенного происхождения жизни: бульонно-коацерватная и твердоматричная модели.
Бульонно-коацерватная модель исходит из того, что сложные органические вещества возникли в растворах (в «бульоне»), из которых формировались коацерваты — прямые предшественники протоклеток.
Уже Ламарк в 1802 г. высказал идею о самопроизвольном зарождении живого под действием «флюидов» — теплоты и электричества. Позднее Чарльз Дарвин в одном из частных писем высказывал мысль о самозарождении жизни на Земле в каком-нибудь «маленьком теплом водоеме». Он допускал, что жизнь возникла из молекул химических веществ, которые под действием света, тепла и электричества взаимодействовали, давая сложные соединения. При этом Дарвин замечал, что такое было возможно только в эпоху первобытной Земли, так как в современных условиях всякий новый организм становился бы жертвой конкуренции или хищничества со стороны уже существующих организмов.
В 20-е годы XX века гипотеза возникновения жизни на основе химической эволюции была детально разработана российским академиком А. О. Опариным и, независимо от него, американцем Дж. Холденом, а позднее получила некоторые экспериментальные подтверждения. В современном толковании, согласно этой гипотезе, жизнь возникла из неорганических веществ в несколько этапов, причем химическая эволюция перешла в биологическую эволюцию. Как же это могло быть?
Возраст Земли определяют в 5-7 млрд лет. В этот ранний период наша планета представляла раскаленное газо-пылевое облако. Около 4 млрд лет назад образовалась кора. Примерно 3,6 млрд лет назад уже возникла жизнь. По геологическим данным первые организмы — бактерии и сине-зеленые водоросли — населяли воды мирового океана: моря, лагуны, ванны, гидротермы (места выхода горячих газов). Но появлению микроорганизмов предшествовала длительная химическая эволюция, в ходе которой на первом этапе из неорганических веществ синтезировались органические биополимеры.
По Опарину 4 млрд лет назад атмосфера земли состояла из аммиака (NH3), метана (CH4), углекислого газа (CO2) и паров воды (H2O). По современным данным аммиак и метан, возможно, отсутствовали, но не исключается наличие водорода (Н2), хлора (Cl2), азота (N2), сероводорода (H2S). Газы вырывались из остывающего центра земного «облака». Кислород не доходил до атмосферы, окисляя по пути различные вещества. Когда температура поверхности упала ниже 100 градусов, начался период горячих дождей, сформировался мировой океан, многочисленные моря и мелкие водоемы. Начался первый этап возникновения жизни — синтез органических веществ. В горячей воде хорошо растворялись атмосферные газы, а также газы, минеральные соли и другие вещества, приносимые горячими источниками и вулканами. Атмосфера и поверхность земли подвергались действию космического излучения, включавшего ультрафиолетовый свет от солнца, радиоактивные частицы, гамма-излучение. Были частые и сильные грозы, дававшие мощное электромагнитное излучение. В этих условиях из газов в воде возникали простые органические соединения: HCN, CH3-CH3, CH2=CH2, CH2=O (формальдегид), а из них и более сложные: полимерные углеводороды типа СН3-СН2-СН2-…-СН3, карбоновые кислоты СН3-СООН, СН3-СН2-СН2-…-СООН. Путем присоединения к этим веществам азота в форме аминогрупп (-NH2) легко могли сформироваться аминокислоты: NH2-CH®-COOH, где R — изменчивый радикал, а группы -NH2 и -СООН представляют боковые «ручки» для полимеризации аминокислот в белок. Аналогично можно вывести из простых органических предшественников мочевину, глицерин, липиды, углеводы, азотистые основания и, далее, через полимеризацию нуклеиновые кислоты — ДНК и РНК.
В 1953 г. молодой американский аспирант С. Миллер сумел воспроизвести в колбе искусственный абиогенный синтез органических веществ. Из метана, аммиака, водорода и воды при температуре 80 градусов Цельсия, при высоком давлении и при пропускании электрических разрядов напряженностью 60 тысяч вольт он получил жирные кислоты, мочевину, уксусную кислоту и, самое главное, прямые предшественники белка — аминокислоты (глицин и аланин — 2 аминокислоты из 20, входящих в состав белков). Позднее американец С. Фокс при нагревании смеси аминокислот синтезировал и сам белок — в виде простейшего полипептида. Были получены также и нуклеотиды — предшественники ДНК и РНК.
Таким образом, теория Опарина-Холдена совершала триумфальное шествие в лабораториях биохимиков середины XX века. Однако появилась и альтернативная версия о том, что органические вещества могли приноситься на Землю в составе комет и метеоритов. Но как бы там ни было, от органических веществ до простейшей клетки — дистанция большого размера. Как представлял себе Опарин, на втором этапе химической эволюции происходило концентрирование органических веществ в плотных капельках — коацерватах. В присутствии электролитов (растворенных солей) органические вещества отделяются от общего раствора в виде геля — более концентрированного раствора с гидрофобными, водородными и другими дополнительными связями между молекулами. Эти капли — коацерваты — получали искусственно. Некоторые их свойства были сравнимы с функциями живых клеток.
Искусственные коацерваты могли поглощать из окружающего раствора различные вещества, имитируя питание и рост. Эти вещества преобразовывались в результате химических реакций, а продукты выделялись во внешнюю среду. Таким образом, происходил примитивный обмен веществ. При встряхивании коацерваты делились, а потом снова росли путем самосборки. Опарин даже считал, что между коацерватами идет борьба за существование, и «выживают» более устойчивые, приспособленные к данной среде. Эту же мысль с позиций теории самоорганизации позднее развивал немецкий ученый М. Эйген. Он также считал, что происхождение жизни есть результат отбора и адаптаций на уровне органических макромолекул при том, что молекулярная система открыта для обмена веществом и энергией, способна к автокатализу и мутациям.
Но даже сложные коацерваты, если они действительно формировались в первобытных морях, еще не представляли живые системы; это могла быть лишь стадия преджизни. Необходим третий этап — возникновение механизма генетического кодирования и воспроизведения жизни. Классическая версия предполагает возникновение и включение в коацерваты нуклеиновых кислот и белков-ферментов. Причем некоторые ученые считают, что первой возникла РНК (сейчас доказано, что она способна к ауторепликации без ферментов), а уже потом появилась способность к синтезу белков с матрицы РНК и еще позже — с ДНК. Под действием излучений в нуклеиновых кислотах накапливались ошибки репликации, то есть мутации, которые вели с появлению молекулярного разнообразия. С появлением в среде липидов возникли мембраны (как образуются тончайшие масляные пленки на поверхности воды) и появилась возможность более надежной изоляции коацерватных капель. Это надмолекулярное образование уже можно было бы назвать простейшей клеткой.
Однако бульонно-коацерватная модель возникновения жизни имеет и большие трудности. Все рассуждения о предполагаемых событиях третьего этапа остаются спекулятивными, к ним практически нет реальных оснований. Причем они не объясняют самого главного — как возник генетический код, триплетное соответствие первичных структур нуклеиновых кислот, с одной стороны, и белков — с другой. А ведь именно это соответствие представляет суть центральной догмы молекулярной биологии. Трудный вопрос: откуда взялся для построения ДНК фосфор — редкий элемент земной коры. В 1990 г. синтезировано органическое соединение AATE (AminoAdenosinTriacidEster), состоящее из двух частей — со свойствами белка и нуклеиновой кислоты. Вещество оказалось способно к аутокаталитическому воспроизведению (в хлороформе). Но выход на гены и белки отсюда тоже не виден. Попытки объяснить происхождение кодированного соответствия ДНК (РНК) — белок содержатся в другой модели абиогенного возникновения жизни.
Твердоматричная модель происхождения жизни исходит из того, что органические вещества образовались не в растворе, а на твердых фазах минералов. Минеральная поверхность может служить катализатором, то есть резко ускорять реакции синтеза, и одновременно образцом (матрицей) для той химической структуры, которая на ней синтезируется.
На Западе популярна версия о происхождении жизни на минерале пирите — FeS2. Пирит повсеместно распространен, в том числе в гидротермальных источниках. Поверхность кристалла пирита несет положительный заряд, и с ним могут связываться молекулы органических веществ. При образовании пирита из железа (Fe) и серы (S) выделяются электроны и энергия (!), которая может идти на синтез сложных органических соединений. Немецкий химик-органик Вехтершойзер считает, что первые живые клетки представляли собой кристаллические пиритовые «зерна», окруженные мембраной из органических веществ. Размножались они почкованием кристалла вместе с мембраной.
Другой вероятный кандидат на роль матрицы жизни — кристаллическая глина. Она обладает большей структурной сложностью, чем пирит, а это хорошая основа для мутаций и эволюции образующихся макромолекул. Обсуждается также возможная роль кремнезема, слюды, кварца.
Совершенно особая ситуация возникла вокруг минерала апатита. Его большие залежи имеются в горах Хибинах, что на Кольском полуострове. Апатит добывают ради производства фосфатных удобрений, так как в его кристаллической решетке содержится много фосфора. Кроме того, кристаллический апатит присутствует в живых системах — например, в составе зубов и костей. Кристалл имеет форму бесконечно длинной колонки очень малого диаметра. Самое парадоксальное оказалось то, что периодичность повторяющихся элементарных ячеек в кристалле апатита в 3,4 ангстрема (1 ангстрем = 0,0001 мм) точно совпадает с расстоянием между последовательными парами мономеров (нуклеотидов) в молекуле ДНК, а один шаг двойной спирали ДНК соответствует циклу в 6 ячеек апатита. Атомарная структура кристаллической решетки апатита также имела сходство со структурой ДНК. На этих основаниях российским биохимиком Э. Я. Костецким в 1981 г. выдвинута гипотеза абиогенного синтеза нуклеопротеидов, то есть комплекса ДНК и белка, на матрице апатита (рис. 28).
Рис. 28
Было проведено сопоставление данных рентгеноструктурного анализа апатита, с одной стороны, и цепей ДНК и простых белков — с другой. В результате построена пространственная модель апатита с включенными фрагментами ДНК и белков. Как видно на рис. 28, в структуре кристалла апатита легко вписываются ДНК и несколько белковых цепей. При этом источником неорганического фосфата для ДНК выступал фосфат апатита без изменения его положения в структуре кристалла, а азот включался из синильной кислоты HCN и аммиака NH3. Согласно модели, апатит земной коры, находясь в безводной среде, подвергался постоянному и длительному воздействию глубинных газов NH3, CH4, HCN, CO и др. при высоких значениях давления и температуры. В таких условиях ослабляется кристаллическая решетка апатита, облегчается диффузия газовых компонентов вдоль оси кристалла при сохранении его структуры. Ионы -PO4, присутствующие в кристалле, остаются на своих местах и определяют диаметр будущей молекулы ДНК, а другие, в частности избыточный кальций, замещаются на новые атомы из состава газовой смеси. Таким образом, при участии элементов газовой фазы и апатита внутри кристалла, а не на его поверхности, мог осуществляться одновременный синтез ДНК и белка с постепенной заменой части минеральной матрицы органической основой. На смешанных кристаллах, имеющих с апатитом совпадающие пропорции, (кальцит, арагонит, кристобалит), видимо, происходил синтез РНК, а также скелетных белков будущих клеток. Источником энергии для проведения синтезов служили силовое поле апатита, тепло глубинных процессов, энергия фосфатных связей апатита и элементов газовой фазы.
Принципиально важным и революционным в апатитовой модели является то, что в неорганическом минерале уже была заложена структурно-химическая основа ДНК и параллельно — спираль в спираль — основа полипептидных (белковых) цепей. ДНК и белок возникли одновременно и в одной связке, поэтому и их генетическое соответствие родилось в кристалле по принципу стереоспецифической комплементарности (пространственной взаимной дополнительности). Отсюда легко выводится и РНК как посредник между ДНК и белком. Объясняется и возникновение генетического кода — через естественные множественные нарушения микроструктуры кристалла, которые закреплялись как неоднородности нуклеотидного состава ДНК. Модель предусматривает и образование липидных мембран, а также целых протоклеток про- и эукариотического типа.
Как видно, в решении проблемы происхождения жизни имеются весьма надежные основания. Современная наука уже располагает знаниями, достаточными, чтобы утверждать: жизнь возникла на первобытной Земле вполне естественным путем как процесс самоорганизации, на основе преобразования неорганических субстратов в органические макромолекулярные комплексы и, далее, в протоклетки. Что касается конкретных механизмов образования органических комплексов, то, как показывает последний материал, будущее, очевидно, за твердоматричными моделями, среди которых наиболее продуктивна модель апатитовой матрицы.
Живой мир возник на планете Земля вскоре после ее формирования — около 3,5 млрд лет тому назад — в результате самоорганизации из неживых химических систем. С тех времен живые организмы в составе популяций, сообществ, биогеоценозов претерпевают необратимое историческое развитие — филогенез. Основными движущими силами биологической эволюции являются наследственная изменчивость и естественный отбор популяций организмов, наиболее приспособленных к меняющимся условиям среды. Биологическая эволюция совершается параллельно и взаимообусловленно с геологической перестройкой Земли.
Сформированное биоразнообразие включает эволюционно молодые группы, а также и группы древние, создавшие такие виды, которые были способны выиграть борьбу за существование с новыми, более сложными организмами и занять свободные экологические ниши. Поэтому на современной Земле благополучно сосуществуют и взаимодействуют в сложных биогеоценозах самые разные организмы — от бактерий и вирусов до высших растений и животных.
Человек тоже является продуктом биологической эволюции. Он относится к царству животных, типу хордовых, подтипу позвоночных, классу млекопитающих, отряду приматов, семейству людей, роду человек. Все человечество на Земле — единый биологический вид — Homo sapiens, представленный многочисленными расами и подрасами, возникшими как адаптивные модификации в ходе географического расселения вида.
Полагают, что биологическая эволюция человека прекратилась, так как ее ограничивает все более прогрессирующая социальная эволюция. Действительно, эволюция человечества сопровождалась постепенным сужением действия естественного отбора в силу возникновения и развития общественных законов и создания новой, «искусственной» среды обитания. Эволюция человека превратилась в эволюцию разума. Разум Человека стал частью Биосферы Земли и движущим фактором ее дальнейшего развития. В какую сторону?