КОНЦЕПЦИЯ МАТЕРИАЛЬНОЙ СУЩНОСТИ ЖИЗНИ
Концепции современного естествознания. Биология. — Анисимов А.П.
- Механицизм и витализм в истории биологии.
- Живая материя и ее основная форма движения. Обмен веществ и энергии в живой системе.
- Трансформация и использование энергии.
- Белки — структурно-функциональная основа жизни.
- Опора и движение.
- Транспорт веществ.
- Ферментативный катализ.
- Защитные реакции. Иммунитет.
- Сигнализация. Гормональная и нервная регуляция.
Концепция сущности жизни имеет прямое отношение к основному вопросу философии, суть которого в соотношении бытия и сознания, материи и духа. Диалектический материализм решает этот вопрос так: бытие, материя — первичны; сознание, дух — вторичны. То есть сознание как высшее отличие живого от неживого является свойством материи. В таком понимании жизнь есть форма существования особо сложной материи.
МЕХАНИЦИЗМ И ВИТАЛИЗМ В ИСТОРИИ БИОЛОГИИ
Исторически существовало две противоположные точки зрения на этот вопрос — материалистическая и идеалистическая. Первая получила название механицизма, вторая — витализма.
Механицизм (от греческого mechane — орудие, сооружение) объяснял жизнь исходя из обычных механических или физических форм движения и превращения материи. Механицизм — односторонний метод познания, так как основан на признании механической формы движения материи единственно объективной. Было несколько механистических трактовок сущности жизни.
Собственно механицизм — жизнь объяснялась на основе принципов классической ньютоновской механики. Ее каждый прошлый и будущий шаг может быть просчитан. Рождение, жизнь и смерть также циклично закономерны, как восход и заход солнца. Эта трактовка имеет сейчас лишь исторический интерес.
Машинная теория была популярна в 17-18 веках (Декарт и др.). Жизнь представлялась как сумма физических и химических процессов, которые подобно машинным процессам протекают на статичных, неизменных структурах. В этой трактовке отсутствовала идея развития, эволюции. Живой мир рассматривался как сложный физико-химический механизм, работающий в заданном режиме.
Механицизм как физикализм возник в конце 19 — начале 20 веков и получил законченные формы к середине 20 века. Согласно представлениям физикалистов жизнь развивается, но по сути она представляет простые физико-химические процессы. Причем сложнейшие биологические процессы сначала сводятся к более простым химическим, а химические в свою очередь сводятся к еще более простым — физическим. Такие отношения между уровнями разной сложности обозначаются как принцип сводимости (сложные уровни и процессы сводятся к простым). Метод познания, основанный на принципе сводимости, или редукции, называется редукционизмом (от латинского reductio — отодвигание назад, возвращение к прежнему состоянию), так что физикализм в своем методологическом применении выступает как крайняя форма редукционизма. Для физикализма, как и для механицизма в целом, характерно отрицание качественной специфики более сложных материальных образований, поскольку сложное сводится к более простым элементам, целое — к сумме его частей.
Развитию физикализма как естественнонаучного мировоззрения способствовали успехи физики и химии второй половины 19 века и первой половины 20 века, открытие в живых телах свойств и законов движения (в физико-химическом смысле) неорганических тел. Жизнь сводится к процессам обмена веществ и энергии по химическим и физическим законам. Приведем некоторые характерные высказывания видных ученых в духе физикализма.
Бертран Рассел — английский философ, математик, логик; написано в 1951 году: «Нет причины считать, что живая материя подчиняется иным законам, чем те, которые управляют живой материей, и есть достаточные основания полагать, что все поведение живой материи удастся теоретически объяснить средствами физики и химии». Таким образом, надо полагать, биология станет частью физики и химии.
Эрвин Шредингер — австрийский физик, квантовый механик заявил в 1946 году, что «живая материя, хотя она и не отклоняется от установленных к настоящему времени физических законов, вероятно, подчиняется и другим, еще не открытым физическим законам, которые, когда они будут ясно показаны, составят такую же неотъемлемую часть физики, как и первые».
То есть любые, пока что неразгаданные формы проявления жизни рано или поздно будут объяснены как физические процессы. Бурное развитие физики второй половины 20 века, открытие новых элементарных частиц и физических полей, успехи кибернетики и теории информации все более полно объясняют сложные материальные взаимодействия в природе, в том числе и в живых организмах, и все меньше тайн остается в понимании сложных биологических процессов. Но сама по себе физико-химическая интерпретация жизненных реакций не давала в прошлом и не дает сейчас ответа но вопрос: где кончается неживая природа и начинается живая? А что предлагали по этому поводу идейные противники механицистов — виталисты?
Витализм (от латинского vitalis — жизненный, живой) утверждает, что живое не сводится только к физико-химическим явлениям, в нем действуют еще и особые «жизненные силы».
Витализм — давняя концепция, его корни, как и корни механицизма, уходят в классическую древность. Великий античный философ Аристотель (IV век до н. э.) ввел понятие «энтелехия», которое противопоставляется «материи» и означает конечную причину, цель, идею о совершенстве формы организма, которая и управляет развитием. По определению Аристотеля живой природе присуща «цель в самой себе».
В начале 18 века немецкий врач и химик Шталь — автор известной в химии теории флогистона, опровергнутой позже Лавуазье — развивал в медицине виталистическую теорию, известную под названием анимизма (от латинского anima -душа, дух). По Шталю главное для живого организма — его душа, она управляет телом и не допускает его распада.
В 19 веке состоялись выдающиеся открытия химии и физики, виталисты быстро теряли своих сторонников. Виталисты утверждали, что органические вещества могут возникать только с помощью «жизненной силы», но уже в 1828 г. Вёлер из неорганических веществ синтезировал мочевину — азотсодержащее органическое вещество животного происхождения. Знаменитый французский микробиолог Луи Пастер считал, что разложение сахара (брожение, дыхание) — особое свойство живых клеток, но в 1897 г. Бухнер получил из дрожжей ферментный экстракт и провел брожение сахаров в бесклеточной системе, то есть без всякой «жизненной силы». Сильный удар по витализму нанесло открытие Рубнера: в начале 20 века он установил, что закон сохранения энергии действует и в органическом, живом мире.
Однако идея энтелехии не была преодолена окончательно. В начале 20 века система витализма наиболее полно была изложена Хансом Дришем — видным немецким биологом и философом. Опираясь на открытые им эмбриональные регуляции, Дриш утверждал, что развитие организма не сводится к реализации предустановленного, заранее спланированного экстенсивного (пространственного) разнообразия, как утверждали механицисты, но происходит переход интенсивного (непространственного) разнообразия в экстенсивное. Этот переход свойствен только живым системам и осуществляется под действием специфически витального фактора — энтелехии.
Заметим, что признание энтелехии, жизненной силы часто ведет к антропоморфическим образам: учение о субстанциональной душе, психической силе. На этих понятиях основываются так называемый психовитализм (психизм), мистицизм. Поддержанию таких понятий способствуют очень большие и пока не разрешенные трудности в понимании принципов работы мозга, векторов эмбрионального развития, направленного и «целесообразного» характера биологической эволюции. Положительное значение витализма состояло в критике механистических взглядов на биологическую причинность, в стимулировании работ по биологической информации.
С развитием системного подхода и современного учения о самоорганизации (синергетики) причины специфической живой организации стали искать не во внешних силах, а в самопроизвольно и эмерджентно возникающих новых свойствах достаточно сложных систем. Специфика живого не отрицается, но она выводится как естественное свойство наиболее сложно организованной материи. Некий пороговый уровень сложности органических макромолекул — прежде всего белков и нуклеиновых кислот — и является той гранью, за которой (той «причиной», по которой) возникает качество жизни. В общефилософском смысле можно говорить о переходе количественных изменений в качественные. Понять эту качественную специфику — наша дальнейшая задача. Однако одного философского рационализма (от латинского ratio — разум), мудрствования здесь мало — нужны достоверные эмпирические (опытные) знания. Их добывают естественные науки, в том числе биология.
ЖИВАЯ МАТЕРИЯ И ЕЕ ОСНОВНАЯ ФОРМА ДВИЖЕНИЯ. ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ В ЖИВОЙ СИСТЕМЕ
Живая материя имеет в основе те же физические свойства, что и неживая. Понятие «материя» многогранно. В целом материя представляет совокупность вещества и поля, которые выступают как разные виды материи. Веществом называют объекты и системы, обладающие массой покоя. Поле — это виды материи, не имеющие массы покоя. Например, электромагнитное поле представляет излучение в форме квантов (порций) энергии. Существует также гравитационное поле, нейтринное излучение. Между веществом и полем нет строгой границы, так как элементарные частицы вещества, например электроны, обладают одновременно корпускулярными и волновыми свойствами (дуализм волны и частицы). Эти базовые положения квантовой (волновой) механики были сформулированы в 20-30-е годы 20-го века. Выдающимся представителем этой новой науки был датский физик Нильс Бор.
Живая материя представляет особо сложное вещество и, соответственно, сложное многофакторное поле. Именно уровень сложности делает материю живой, хотя внутри нее действуют простые физические и химические законы. По уровню сложности материи разграничиваются и сферы внимания естественных наук. Атомы — поле деятельности физики, молекулы — объект химии, с уровня макромолекул начинается биология, так как с этого уровня сложности появляются качественно новые свойства, характеризующие живую материю.
Биологические макромолекулы — это белки, липиды, углеводы и нуклеиновые кислоты. Подчеркнем, что белки и нуклеиновые кислоты представляют апериодические полимеры, так как их мономеры — 20 видов аминокислот в белках и 4 вида нуклеотидов в ДНК и РНК — чередуются беспорядочно. Это и является источником огромного структурного разнообразия живой материи, какого нет в неживой природе.
Любая материя существует в движении. В широком смысле под движением материи понимают ее постоянное развитие, изменение, преобразование вещества в поле и обратно. Для понимания основной формы движения живой материи сначала необходимо усвоить важнейшее исходное понятие — 2-ой закон термодинамики. Суть его в том, что в природе изначально существует фундаментальная асимметрия, неравновесие в распределении вещества и поля (энергии), поэтому самопроизвольно все физические процессы (движение материи) направлены к достижению равновесного состояния. Это означает переход материи из упорядоченного, структурированного состояния, когда есть сгустки и разреженные участки вещества и поля, к диффузному, гомогенному распределению вещества и поля в пространстве. В таком диффузном состоянии материя имеет минимальную свободную энергию — энергию, способную совершить работу, и, напротив, максимальную энтропию -рассеянную долю энергии, не способную к совершению работы. Это правило касается всех самопроизвольных процессов, в том числе колебательных: горячее тело рано или поздно остывает (энергия рассеивается); прыгающий мяч снижает амплитуду и в итоге останавливается и т. д. Эти процессы дезорганизации материи самопроизвольно необратимы.
Сформулированное 2-ое правило термодинамики полностью справедливо и для живой материи, которая в основе подчиняется законам физики и самопроизвольно стремится к распаду, к равновесному состоянию с минимальной свободной энергией и максимальной энтропией. На рис. 4 эти процессы показаны в левой части схемы и означают смерть живой материи, ее превращение в неживую.
Рис. 4. Термодинамические процессы в живой материи.
Однако живая материя, пока она действительно живая, остается неравновесной, структурированной, высоко упорядоченной. В ней имеется свободная, готовая совершить работу энергия, а энтропия минимальна. Такое состояние поддерживается за счет притока внешней энергии и ее трансформации в энергию химических связей макромолекул. Концентрация вещества и поля, то есть повышение внутренней свободной энергии материи происходит в процессе разнообразных биосинтезов (образования сложных веществ из простых), сопряженных с поглощением внешней энергии. Это и есть жизнь — противоположность смерти (правая часть схемы на рис. 4). Поскольку основной формой внешней энергии для поддержания жизни является солнечный свет, формулу жизни можно конкретизировать:
Таким образом, взаимодействие потоков простого вещества и энергии в ходе биосинтеза живого вещества и обратный процесс распада, то есть обмен веществ и энергии, составляет фундаментальное свойство жизни, основную форму движения живой материи. Этому определению вторят разнообразные характеристики жизни, как-то:
Жизнь — это специфическая форма движения материи (кругооборот материи, обмен веществ и энергии) с поддержанием упорядоченного неравновесного состояния (с высокой свободной энергией и низкой энтропией) за счет поглощения и трансформации внешней энергии.
Жизнь — это поддержание высокой упорядоченности (низкой энтропии) в среде с меньшей упорядоченностью (высокой энтропией).
Жизнь препятствует росту энтропии.
Жизнь — это синтез вещества и поля.
Далее мы подробнее остановимся на вопросах биосинтеза веществ и использования энергии, но не вдаваясь в глубокие детали во избежание потери главной мысли — о материальной сущности жизни.
ТРАНСФОРМАЦИЯ И ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ
Итак, материальная сущность жизни проявляется, прежде всего, в непрерывном обмене веществ и энергии, который происходит между живой системой (клеткой, организмом, биоценозом) и окружающей его внешней средой. В этом смысле биологические системы являются открытыми.
Разные организмы потребляют разные виды энергии, в связи с чем их делят на аутотрофные и гетеротрофные. Аутотрофные организмы (дословно — самопитающиеся) способны поглощать энергию неживой природы. Прежде всего это зеленые растения, а также бурые, красные и сине-зеленые водоросли, использующие солнечный свет для процесса фотосинтеза — образования органического вещества глюкозы из неорганических воды и углекислого газа. К аутотрофам относятся также некоторые бактерии, способные к реакциям хемосинтеза — синтеза органических веществ за счет энергии простых химических реакций. При этом первичная энергия (солнечная или химическая) преобразуется в энергию химических связей сложных органических молекул, так что аутотрофы как бы сами создают себе пищу. Гетеротрофные организмы (питающиеся за счет других) — человек, все животные, грибы, а также многие бактерии — получают пищу в виде готовых органических веществ, произведенных аутотрофами, в основном растениями. В составе этой пищи они получают и энергию, заключенную в химических связях. Если органическое вещество пищи расщепить на более простые вещества, освобождается энергия. По сути гетеротрофы получают ту же солнечную энергию, но преобразованную зелеными растениями в химическую. Отсюда ясна огромная роль растительных организмов как посредника в энергетическом обеспечении животных и человека. Избавиться от этой зависимости, получать какую-либо энергию прямо из неживой природы человечество еще не научилось. И хотя академик В. И. Вернадский выдвигал такую научную задачу, дальше фантастических произведений дело не продвинулось и вряд ли продвинется в обозримом будущем. Поэтому для биологов всего мира одной из приоритетных задач остается понять во всех деталях механизм фотосинтеза, с тем чтобы максимально интенсифицировать его в растениях и по возможности воспроизвести в искусственных условиях.
Рис. 5
Рассмотрим несколько подробнее реакции энергетического обмена. Независимо от исходного источника энергии все организмы — как аутотрофы, так и гетеротрофы — сначала переводят энергию в удобное для дальнейшего использования состояние. Это — так называемые макроэргические (богатые энергией) связи в молекулах аденозинтрифосфорной кислоты — АТФ (рис. 5). Образуются молекулы АТФ из аденозиндифосфорной (АДФ) или аденозинмонофосфорной (АМФ) кислоты и свободных молекул фосфорной кислоты, но при непременном поглощении внешней энергии — солнечной или химической (эндотермическая реакция). Количество энергии, запасенное в макроэргической связи, на порядок больше, чем в обычных связях, например, внутри молекулы глюкозы, поэтому в составе АТФ энергию удобно хранить и транспортировать в пределах клетки. В местах потребления этой энергии АТФ распадается на АДФ и фосфат (при крайней необходимости даже на АМФ и два фосфата), а освобожденная энергия расходуется на ту или иную работу — синтез глюкозы в хлоропластах растительных клеток, синтез белков и других макромолекул, транспорт веществ в клетку и из клетки, движение и др. (см. рис. 5 и 6). АДФ (АМФ) и фосфат могут снова соединиться, захватив очередную порцию внешней энергии, а потом разрушиться и отдать энергию в работу. Циклические преобразования АТФ многократно повторяются. Таким образом, АТФ выступает в качестве универсального переносчика энергии внутри клетки, своеобразной разменной монетой в энергетических платежах за внутриклеточные процессы.
Рис. 6
После того, как нам стала ясна роль АТФ и ее цикл, вся проблема клеточной энергетики сводится к пониманию первичных источников энергии и механизмов ее перевода в АТФ. В общем виде ситуация такова: у фотосинтетических аутотрофных организмов синтез АТФ из АДФ и фосфата генерируется солнечной энергией, у гетеротрофов — энергией от окисления пищевых продуктов (см. рис. 5). Таким образом, растениям для синтеза АТФ нужен свет, животным и человеку нужна органическая пища.
Свет является первичным источником энергии, он используется в реакциях фотосинтеза у растений. По конечной сути реакция фотосинтеза довольно проста:
6СО2 + 6H2O + энергия света = С6Н12О6 + 6О2 (рис. 6): с помощью энергии света из углекислого газа и воды синтезируется 6-углеродное органическое вещество — глюкоза (моносахарид), и в качестве «лишнего» продукта образуется кислород, который уходит в атмосферу. На самом деле реакция более сложная, она состоит из двух стадий: световой и темновой. Сначала на свету с помощью особого Mg-содержащего белка хлорофилла вода расщепляется на кислород и водород, а энергия водорода передается на синтез АТФ. Только потом, в темновой стадии, водород соединяется с углекислым газом и образуется глюкоза. При этом часть АТФ расщепляется, отдавая энергию глюкозе.
Глюкоза вместе с минеральными веществами, поступающими в растение из почвы (азот, сера, фосфор, железо, магний, кальций, калий, натрий и др.), становится основой для более сложных синтезов — образуются полисахариды, липиды, белки, нуклеиновые кислоты, из которых строятся рабочие структуры клеток. Но и эти синтезы, как и синтез глюкозы, требуют энергетических затрат. Прямое использование света здесь невозможно (эволюция не создала таких энергетических переходов), поэтому некоторая часть глюкозы тратится как энергетический субстрат, то есть глюкоза становится вторичным источником энергии. Глюкоза расщепляется и отдает энергию — сначала на синтез АТФ, а после расщепления АТФ — на биосинтезы макромолекул (рис. 6). Значительная часть АТФ, как уже сказано выше, расходуется на другую работу — транспорт веществ, движение клетки и др.
Наиболее эффективно глюкоза расщепляется с участием кислорода: C6H12O6 + 6O2 = 6CO2 + 6H2O + энергия. По химической сути это — полное окисление (горение!) глюкозы. В живой клетке это «горение» происходит замедленно, поэтапно, так что энергия выделяется малыми порциями, и большая ее часть (около 55 %) используется на синтез АТФ, остальная рассеивается в виде тепла. Полное окисление одной молекулы глюкозы обеспечивает синтез 38 молекул АТФ. Поскольку кислород для окисления мы вдыхаем с атмосферным воздухом, то и на химическом уровне окисление глюкозы кислородом называют дыханием.
На рис. 6 все описанные процессы схематично показаны для аутотрофной растительной клетки. Ее главная черта — способность к фотосинтезу, который обеспечивает первый этап построения органического вещества, в форме глюкозы. Но и дыхание в полной мере присуще растениям, так как именно этот процесс извлекает энергию из глюкозы (а также из жиров и лишних белков), переводит ее временно в АТФ и далее в сложные макромолекулы. Эта же схема, но с изъятием реакции фотосинтеза, соответствует и гетеротрофному метаболизму животных клеток. В этом случае глюкоза (а также другие углеводы, жиры, трофические белки и др.) поступают в клетку извне в готовом виде. Часть этих материалов идет на дыхание (в топку, для извлечения энергии через синтез АТФ), а часть — после некоторой переделки — на синтез новых макромолекул как строительный материал . Таким образом, пища у гетеротрофов (то есть и у нас с вами) имеет двойное назначение — энергетическое и пластическое (строительное).
На рис. 6 следует обратить внимание на единство процессов энергетического и пластического (строительного) метаболизма клетки. Энергия поглощается из внешней среды, преобразуется в АТФ прежде всего для осуществления строительных процессов, для построения живой материи. Или обратно: построение живой материи, то есть синтез макромолекул из простых неорганических веществ, возможен только с поглощением внешней энергии. Точки пересечения стрелок энергетического и пластического обмена означают места сопряжения энергетического и пластического метаболизма. В живой клетке таких мест очень много. Сопряжение светового потока и синтеза глюкозы (реакция фотосинтеза) происходит в хлоропластах — специальных органоидах растительных клеток, сопряжение дыхания (окисления глюкозы) и синтеза АТФ — в митохондриях, сопряжение распада АТФ и синтеза клеточных белков — в рибосомах и т. д.
С точки зрения обсуждаемой проблемы — материальной сущности жизни — все рассмотренные процессы обмена веществ и энергии в клетке представляют простые физико-химические реакции. Мы не углублялись в механизмы преобразования энергии в хлоропластах и митохондриях, но если бы сделали это, то убедились бы в их изначально физической сущности. Основные события здесь связаны с распадом атомов водорода на элементарные заряженные частицы — протоны (Н+) и электроны (е-) и их индуцированным переносом по разные стороны мембраны внутри хлоропластов и митохондрий. В этих органоидах, как в электрических батарейках, создается разность электрических потенциалов порядка 0,2 вольта, которая при необходимости реализуется в электрический (протонный) ток, а этот ток, в свою очередь, вращает и активирует ферменты синтеза АТФ. Аналогичные физико-химические преобразования мы увидим и в других клеточных структурах.
БЕЛКИ – СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ОСНОВА ЖИЗНИ
Белки представляют полимерные молекулы длиной в 50-100-500 и более мономеров — аминокислот. Имеется 20 разновидностей аминокислот, различных по химическим свойствам их свободных концов — радикалов.
Особо выделим аминокислоты со свободным электрическим зарядом. Так, аспарагиновая и глутаминовая кислоты имеют отрицательный заряд (лишняя –СОО- группа), аргинин, лизин, аспарагин и глутамин — положительный (лишняя –NH+ группа). Некоторые аминокислоты имеют свободную гидроксильную группу (–OH) . В совокупности активные группы придают молекуле белка электрический заряд — положительный или отрицательный в зависимости от соотношения аминокислот с разными зарядами. Кроме того, такие аминокислоты как цистеин и метионин имеют на свободном конце серу (группа –SH или –SCH3) и могут формировать между собой -S-S- мостики, стягивая участок полипептидной цепи в петлю.
Эти и другие особенности белковой молекулы, которые целиком зависят от набора и порядка чередования аминокислот (то есть от ее первичной структуры), придают каждой молекуле в водном окружении неповторимую вторичную и третичную (трехмерную) структуру. В каждой белковой молекуле в строго определенных местах есть активные участки, нередко содержащие какой-нибудь металл (железо — Fe, магний — Mg, медь -Cu и др.) или другие специфические соединения. Эти участки обычно и отвечают за особые функции белков.
Важнейшее свойство белковой молекулы, объясняющее механизм ее функционирования, это — способность обратимо изменять свою третичную структуру (трехмерную форму) в ответ на какое-либо раздражение. Раздражителем чаще всего выступает энергетический разряд от расщепления молекулы АТФ. Такая обратимая денатурация, или конформационная перестройка, и есть совершаемая молекулой работа. Конформационная перестройка молекулы подобна циклу сжатия и расслабления пружины: при внешнем давлении пружина сжимается и приобретает внутренний запас энергии, а на обратном ходу совершает работу. В зависимости от структуры белковой молекулы и ее местонахождения совершаемая работа, то есть функция, будет различна. Ниже будет показана роль белков в реализации основных жизненных функции: опорно-двигательной, транспортной, каталитической, защитной, сигнальной.
Обычно называют еще энергетическую функцию белков. Действительно, белки в своей химической структуре несут большой запас энергии. Они могут распадаться на отдельные аминокислоты, которые, в свою очередь, подобно глюкозе окисляются в митохондриях до углекислого газа и воды и отдают энергию на синтез АТФ. Однако этот путь в энергетическом обмене используется как резервный, в тех случаях, когда исчерпаны запасы углеводов и жиров — основных энергоемких субстратов. Использование белков в энергообмене расточительно для клетки, так как аминокислоты представляют дефицитный продукт, многие из них вообще не могут синтезироваться у животных, а получаются от растительных продуктов (незаменимые аминокислоты). Белки имеют уникальную структуру, которой дано более высокое предназначение. В этом смысле расщеплять белки для извлечения энергии — все равно, что топить печь ассигнациями. Кроме того, аминокислоты предварительно необходимо освободить от азота (дезаминировать), чтобы уровнять их с продуктами полураспада глюкозы, а это и дополнительная работа и потеря важнейшего элемента из организма (азот в составе простых соединений выводится с мочой). Таким образом, белки в энергетическом обмене используются в крайних случаях — при голодании, болезни, возрастных метаморфозах. Основные же функции белков, перечисленные выше и рассматриваемые ниже, значительно более важны и изящны, поскольку в их реализации используется уникальность структуры белка, его неповторимые индивидуальные формы и активные центры.
ОПОРА И ДВИЖЕНИЕ
Опорно-двигательная функция — одна из важных в обеспечении жизнедеятельности клеток и всего организма. Движутся органоиды внутри клетки, сами клетки в воде или по твердой поверхности, организмы в их среде обитания. Движение невозможно без опоры, поэтому и в клетке и в организме формируются комплексные опорно-двигательные структуры. Например, у человека мышцы связаны со скелетом, и только в такой комбинации работа мышц становится эффективной.
У позвоночных животных и человека опорные соединительные ткани имеют в межклеточной основе специальный волокнистый белок коллаген (при вываривании костей, сухожилий или связок он набухает и дает клей, отсюда и название белка — клей дающий). В костях межклеточная коллагеновая основа для большей твердости минерализована солями кальция. Имеются опорные белковые микронити и микротрубочки и в самих клетках, они придают клеткам определенную форму, поддерживают отростки (например, в нервных волокнах).
В клетках мышечной ткани имеются специальные сократительные нити — миофибриллы, которые обеспечивают сокращение клеток и всей мышцы. Каждая миофибрилла сложена из молекул белков двух основных видов — актина и миозина (рис. 7). Актин образует прочные микронити, по которым буквально шагают ножки миозина. Каждый шаг — это изменение третичной структуры молекулы миозина, его обратимая денатурация под действием энергии АТФ. Когда одна ножка, зацепившись за микронить, изгибается, другая ножка распрямляется и цепляется за новое место на микронити. Потом они меняются ролями — первая ножка отцепляется от микронити и распрямляется, а вторая изгибается и подтягивает нить. Каждый шаг требует энергии АТФ. Таким образом, при наличии АТФ ножки быстро бегут вдоль микронити, а точнее — тянут нить к себе, так как обращенные в разные стороны пучки миозина скреплены хвостиками, и ножки разных пучков тянут свои микронити в противоположных направлениях (см. рис. 7).
Рис. 7
Главное, что следует вынести из описания мышечной функции, это понимание простой физико-химической сущности движения, которая сводится к изменению объемной формы молекулы белка миозина. Эта форма, или третичная структура, в свою очередь зависит от силы химических связей внутри молекулы. При энергетическом разряде от распада молекулы АТФ сила связей резко, но кратковременно изменяется — молекула «вздрагивает» (сгибается и тут же разгибается), совершая работу. Суть реакции миозина настолько проста, что воспроизводится in vitro («в стекле», в пробирке, то есть в искусственных условиях) на чистых белках, выделенных из клеток, или даже на мертвых клетках при добавлении АТФ. Добавим, что аналогичный механизм движения, но с другими белками, известен для ресничек и жгутиков, которыми снабжены многие одноклеточные организмы (например, инфузория), сперматозоиды, некоторые покровные (эпителиальные) ткани. Итак, движение — важное проявление жизни — имеет вполне материальную сущность.
ТРАНСПОРТ ВЕЩЕСТВ
Перенос веществ между организмом и средой — необходимый этап в процессах обмена веществ. Это — поглощение пищевых материалов и вынос отходов, поглощение кислорода и удаление углекислого газа, перенос неорганических ионов, воды и других веществ. Способы и механизмы поглощения и выделения веществ различаются у организмов разного уровня сложности — у одноклеточных и многоклеточных, животных и растений. На высших уровнях организации — у многоклеточных животных — в эти процессы включаются мышечные и ресничные механизмы: преследование и захват добычи, глотание и перистальтика по кишечнику у позвоночных, нагнетание водных потоков и фильтрация планктона у сидячих беспозвоночных — например, у двустворчатых моллюсков мидии, гребешка. У высших растений для транспорта воды и солей от корней к стеблю и листьям большое значение имеет осмотическая диффузия — движение растворов по градиенту концентрации, то есть из среды с высокой концентрацией вещества в среду с низкой концентрацией. Этот транспорт имеет простую физико-химическую основу и не требует энергетических затрат. Движение синтезированных веществ (сахаров) в обратную сторону, напротив, требует энергии.
Переносу малых молекул часто способствует их связывание с более крупными молекулами-переносчиками. Типичный пример — перенос кислорода из атмосферного воздуха, вдыхаемого через легкие, в кровь и далее во все клетки организма (для окисления пищевых субстратов и извлечения энергии). В этом случае кислород из полости легких под осмотическим давлением поступает в кровеносные капилляры, далее в специальные клетки — эритроциты (красные кровяные тельца), где химически связывается с особым белком гемоглобином. Принцип связывания кислорода с гемоглобином очень прост. В составе этого белка имеются атомы железа, которые и окисляются кислородом — железо временно превращается в окисел (как обычное железо на воздухе превращается в ржавчину). Однако связь железа с кислородом непрочная, так что по мере углубления эритроцитов в ткани организма, где собственная концентрация кислорода ниже, гемоглобин отдает связанный с ним кислород, который теперь диффундирует в клетки, а далее в митохондрии. Решающее значение в транспорте кислорода имеет конфигурация (третичная структура) молекулы гемоглобина, от которой зависит окислительно-восстановительная способность связанного железа. При заболевании, которое называется серповидно-клеточной анемией (эритроциты имеют нетипичную форму серпа), замена всего одной аминокислоты в составе гемоглобина так изменяет его форму, что делает железо не эффективным в отношении кислорода. Дыхание нарушается.
Критическим моментом в транспорте веществ между организмом и средой — будь то одно- или многоклеточный, животный или растительный организм — является преодоление клеточных оболочек. Оболочка клетки включает липидно-белковую мембрану (плазмалемму) и углеводную стенку.
Клеточная стенка, даже очень толстая, как у растительных клеток, не представляет серьезного препятствия для воды и растворенных в ней веществ, но плазмалемма имеет настоящие барьерные свойства, так как ее основу составляют два слоя липидов (жиров), практически не проницаемых для водных растворов. Через билипидный слой легко проникают лишь газы (мелкие электрически нейтральные молекулы) и жирорастворимые вещества (спирты, ацетон и др.). Но клетке нужны прежде всего питательные органические и минеральные вещества. Для переноса заряженных частиц — ионов, а также небольших органических молекул — аминокислот, сахаров и т.п. в липидной мембране вставлены многочисленные белковые поры. Мембрана представляет как бы белковую мозаику по липидному фону. Белки мембранных пор, как и большинство других белков, взаимодействуют с водой, так что пора представляет фактически водный канал. Однако благодаря белковой компоненте каждый такой канал имеет избирательную проницаемость — для ионов K+, Na+, Ca2+, Cl- и др. Вместе с ионами в клетку проникают и связанные с ними органические молекулы — сахара и аминокислоты, так осуществляется питание клеток. Рассмотренный случай представляет пассивный транспорт веществ, он не требует затрат энергии. Совершенно особый тип каналов представляют ионные насосы, способные перекачивать ионы против градиента их концентрации. Как следует из самого термина, насосы могут работать только с затратой энергии, и такой способ перемещения веществ называют активным транспортом. Белковая пора насоса способна расщеплять молекулу АТФ и за счет извлеченной энергии проталкивать ионы против их диффузионной силы. Созданный таким образом наружный избыток ионов возвращается обратно пассивным путем, но несет с собой нужные органические вещества. Так сочетание активного и пассивного транспорта обеспечивает питание клеток. Избыток ионов натрия снаружи клетки используется также для возбуждения электрического тока и проведения нервного возбуждения.
Даже поверхностное рассмотрение механизмов мембранного транспорта веществ показывает, что, как и в случае мышечного сокращения, работа по активному транспорту сводится к обратимой конформационной перестройке молекул белковых пор с преобразованием энергии АТФ. Направленный в обратную сторону пассивный транспорт ионов и питательных веществ представляет простую диффузию, но является следствием предшествующего активного транспорта. Все эти процессы подчиняются в основе известным физико-химическим закономерностям.
ФЕРМЕНТАТИВНЫЙ КАТАЛИЗ (БИОКАТАЛИЗ)
Катализ — это возбуждение или изменение скорости химических реакций с помощью внешних добавок — катализаторов. Катализ используется в химической промышленности при получении аммиака, серной и азотной кислот, моторного топлива, разнообразных полимеров. Широко распространен катализ и в живых организмах. С участием катализаторов реализуется генетическая информация и осуществляются все процессы обмена веществ и энергии. Катализ происходит в клетках, в межклеточных жидкостях и полостях, в пищеварительном тракте.
В роли катализаторов биохимических реакций выступают специальные белки, называемые ферментами. При сравнительно низких концентрациях реагирующих веществ и при нормальных температурах (не выше 40 градусов) клеточные реакции ускоряются с помощью ферментов в миллионы и миллиарды раз! Различают анаболитические, направленные на синтез, и катаболитические, направленные на распад, ферментативные реакции. Несколько разных ферментов могут образовывать цепочки (метаболические пути), по которым совершаются цепные реакции: вещество (субстрат) передается от фермента к ферменту и подвергается поэтапной перестройке — усложнению или, наоборот, деградации. Чаше всего такие полиферментные комплексы выстраиваются на мембранах клетки или ее органоидов.
Как действуют ферменты? Ферменты очень специфичны по типу катализируемой реакции. Известно несколько тысяч ферментов разного действия, и каждый из них имеет специфическую, отличную от других пространственную структуру. Молекула фермента представляет свернутую полипептидную нить, в определенном месте которой включен небелковый компонент — кофермент (часто это бывают витамины, ионы металлов). Именно этот специфичный участок отвечает за функцию фермента, он называется активным центром. Благодаря молекулярной специфичности своих активных центров ферменты узнают и захватывают нужные вещества-субстраты, сближают их для соединения (синтеза) или, напротив, разделяют в реакциях распада (лизиса). При этом сам фермент не разрушается, а лишь изменяет свою третичную белковую структуру — происходит кратковременная и обратимая денатурация молекулы, ее конформационная перестройка (рис. 8).
Рис. 8
Хотя ферменты и понижают многократно энергию активации соответствующих реакций, для их осуществления все же требуется определенная энергия. Энергия может генерироваться окислительно-восстановительными кофакторами — такими, как НАД, ФАД или гем. Ферменты класса синтетаз (лигазы) способны расщеплять молекулу АТФ до АДФ и фосфата и используют выделенную энергию на свою конформационную перестройку (рис. 5). После произведенной работы по синтезу сложного вещества большая часть энергии не исчезает и не уходит в виде тепла — она лишь переходит в новые химические связи синтезируемого вещества. Впоследствии — в случае расщепления этого вещества — энергия может быть снова извлечена для производства другой работы.
Даже не вдаваясь в детали ферментативного катализа, видно, что эта важнейшая биологическая функция реализуется как сумма простых физико-химических реакций. Важнейшие из них — стереохимическое молекулярное узнавание субстрата ферментом и конформационная перестройка молекулы белка-фермента, суть которой, как и в реакциях мышечного сокращения или активного транспорта, состоит в обратимом изменении силы химических связей внутри молекулы. Изучение зависимости скорости ферментативной реакции от концентрации фермента и субстрата показало, что в простейших случаях она описывается уравнением Михаэлиса-Ментен. Из этого следует, что в основе ферментативных реакций лежат те же законы и принципы, на которых основаны обычные химические реакции. Однако единая теория ферментативного катализа до сих пор не разработана, так как механизмы протекания ферментативных реакций очень сложны, многофакторны и разнообразны, зависят от большого числа переменных величин, от взаиморасположения ферментов на мембранах и в ряде случае пока не поддаются математическому описанию. В этом и проявляется эмерджентная специфика биологических реакций как специфика нового уровня сложности.
ЗАЩИТНЫЕ РЕАКЦИИ. ИММУНИТЕТ
Живые системы — организмы, клетки, клеточные органоиды — должны сохранять биологическую (биохимическую) индивидуальность. Присоединение к ним чужеродных молекул, контакт с вирусами, бактериями, другими паразитами приводит к искажению соответствующих структур и их функций, например, ферментов или клеточных мембран, не говоря уже о прямом токсическом вреде в случае попадания паразитов в организм, в его клетки. Совокупность чужеродных агентов, противоположных своей генетической сущностью данному организму (чужие или искаженные молекулы, вирусы, бактерии, клетки) называют антигенами. В виду чрезвычайной важности поддержания биологической индивидуальности, в эволюции организмов возникает и постепенно совершенствуется система реагирования и защиты от антигенов — иммунитет. Частное проявление иммунитета — невосприимчивость к инфекционным заболеваниям. Изучением защитных реакций организма, направленных на сохранение его структурной и функциональной целостности и биологической индивидуальности, занимается наука иммунология.
Иммунные отношения организма с его антигенами и соответствующие защитные механизмы очень сложны, но хотя бы общее представление о них должен иметь каждый культурный человек. Уже у растений имеются такие защитные факторы, как неспецифические фитонциды — летучие вещества, убивающие бактерий (их много, например, в чесноке и луке), восковый налет на покровных тканях, замуровывание фитопатогенов в клеточных стенках, накопление токсических продуктов в погибших клетках и другие. У животных обособляются специальные клетки — фагоциты, способные пожирать «пришельцев», и другие более специализированные клетки. Причем уровень сложности иммунной системы возрастает в эволюции от простых — беспозвоночных к более организованным позвоночным животным, и наиболее развиты защитные механизмы у млекопитающих, в том числе у человека.
Наш организм прежде всего проявляет различные формы врожденного неспецифического иммунитета — эволюционно древние, присущие низшим животным. Это — кожные и слизистые барьеры, бактерицидное действие ряда кислот в выделениях потовых и сальных желез, стенок желудка и кишечника, разрушение бактериальных стенок особым ферментом лизоцимом, присутствующим в слезной жидкости, и другие. Проникшие в организм бактерии устраняются фагоцитами и специальными антибактериальными белками, против вирусов действует особый белок интерферон. Кроме того, у высших животных и человека развивается сложная иммунная система, включающая красный костный мозг, вилочковую железу — тимус, селезенку, лимфоузлы, лимфоидную ткань пищеварительных и дыхательных путей (например, в миндалинах — гландах, в аппендиксе). Иммунная система формирует и поддерживает так называемый приобретенный специфический иммунитет. Центральное место среди клеток иммунной системы занимают лимфоциты. При контакте с чужеродными антигенами, в зависимости от их природы и структуры, иммунная система дает различные формы иммунного ответа: образование В-лимфоцитами и выделение в кровь специфических белков — антител (гуморальный иммунитет); размножение Т-лимфоцитов, избирательно реагирующих на чужеродные или собственные мутантные клетки (клеточный иммунитет); появление долгоживущих Т- и В-лимфоцитов «иммунологической памяти», которые при повторной встрече с антигенами способны к быстрому и усиленному ответу; формирование иммунологической толерантности (дословно — терпимости), которая выражается в избирательном отсутствии ответа на данный антиген при повторной встрече; возникновение аллергии — повышенной чувствительности к специфическому антигену. Между прочим, иммунологический конфликт возникает у организма не только с вирусами, бактериями и чужеродными клетками, но также с паразитическими червями (глистами, или гельминтами), пересаженными органами, злокачественными опухолями и даже у беременной матери с ее собственным плодом.
Можно ли чрезвычайно сложные и многообразные защитные механизмы иммунитета свести к простым физико-химическим реакциям, как мы это сделали в отношении биологического движения, транспорта и катализа? Наиболее тонкое распознавание антигенов и максимальную иммунную специфичность обеспечивают антитела — специальные иммунные белки, вырабатываемые лимфоцитами и называемые иммуноглобулинами. В течение эмбрионального развития и после рождения появляется множество лимфоцитов, активированных на выработку определенного вида антител — против соответствующего вида антигенов. В результате еще до встречи с антигеном в организме предсуществуют группы лимфоцитов, запрограммированных синтезировать антитела ко множеству (не менее 10 тысяч !) различных антигенов. Молекулярная структура антител-иммуноглобулинов хорошо изучена. Это гликопротеидные, то есть белковые в основе, но содержащие углеводную надстройку, молекулы. У них имеются вариабельные по аминокислотному составу концевые участки, которые, как и у ферментов, образуют активный центр. Активный центр антитела представляет своеобразную молекулярную полость особой конфигурации, которая по размерам и структуре соответствует детерминантным (распознаваемым) участкам молекулы антигена. Таким образом, активный центр определяет способность антитела специфически связываться с определенным антигеном. Выполняется принцип молекулярной комплементарности — дополнительности, подобно тому, как ключ комплементарно соответствует своему замку. Множественные аминокислотные замены в вариабельных частях иммуноглобулинов создают неисчерпаемый набор активных центров, способных связывать любой природный или искусственный антиген. Таким образом, в основе иммунной специфичности, в том числе при распознавании вирусов, бактерий и чужих клеток, лежит простое соответствие стереохимической структуры молекул. Как и в предыдущих примерах с другими функциями белков, в данном случае проявляется вполне материальная сущность сложнейшей реакции, свойственной только живым организмам.
Остается добавить, что препараты специфических антител (так называемые иммунные сыворотки), получаемые от искусственно иммунизированных животных, широко используются для диагностики, предупреждения и лечения инфекционных заболеваний и в некоторых других случаях в медицине и экспериментальной биологии. Например, при укусах ядовитых змей применяют специфическую к данному яду антитоксическую (противоядную) сыворотку. При заражении вирусом клещевого энцефалита собственный иммунитет организма усиливают инъекциями гамма-глобулина. При подозрении на раковую опухоль точный диагноз может дать реакция крови больного на раковые антигены; даже раннюю беременность сегодня легко идентифицируют по обнаружению в крови или моче женщины специфических антигенов зародыша.
Наиболее сложная задача современной иммунологии — найти способы защиты от вируса иммунодефицита человека (ВИЧ), вызывающего страшное заболевание — синдром приобретенного иммунодефицита, или СПИД. Этот вирус избирательно поражает лимфоидные клетки — те самые лимфоциты, которые и должны обеспечивать иммунитет, но, будучи пораженными, не справляются со своими обязанностями. Больной СПИДом начинает серьезно страдать от обычных инфекций, которые здоровый человек переносит как несложную простуду. Чаще всего роковым событием становится появление мутантных злокачественных клеток, которые в отсутствие иммунного надзора разрастаются в раковую опухоль. ВИЧ передается с кровью или половым путем. Эффективные средства лечения пока не разработаны. Единственным способом защиты остается профилактика от контактов с чужой кровью (для этого и применяют одноразовые шприцы), а также здоровые и осмотрительные отношения в половой жизни.