История геронтологии. Концепции геронтологии
ПЕРИОДИЗАЦИЯ ИСТОРИИ ГЕРОНТОЛОГИИ
ПЕРИОД КАЧЕСТВЕННЫХ МОДЕЛЕЙ
ПЕРИОД КОЛИЧЕСТВЕННЫХ МОДЕЛЕЙ
ПЕРИОД АНАЛИТИЧЕСКИХ МОДЕЛЕЙ
4.1. Начало формирования геронтологии как самостоятельной научной дисциплины
4.2. Первые попытки продлить жизнь, основанные на биологических исследованиях
ПЕРИОД КИБЕРНЕТИЧЕСКИХ МОДЕЛЕЙ
5.1. Формирование современной геронтологии
5.2. Необходимость автоматизации геронтологических исследований
5.3. Перспективы применения достижений нанотехнологии для решения проблемы продления жизни
ПЕРИОД АНАЛИТИЧЕСКИХ МОДЕЛЕЙ
14.1. Начало формирования геронтологии как самостоятельной научной дисциплины
Революционные преобразования, происходившие в биологии в 19 в. и начале 20 в. и в основном заключавшиеся в открытии специфически биологических законов, не могли не повлиять и на развитие биологии старения. Накопление данных о старении живых организмов и их обобщение на основе открытых биологических законов позволили сформулировать научно проверяемые теории старения, ставшие основой для экспериментальных исследований, разработки и практического применения методов продления жизни. Однако, ключом к пониманию первичных причин старения являются процессы на молекулярном уровне организации живой материи. Отсутствие соответствующего знания препятствовало появлению как достоверных теорий старения, так и эффективной терапии болезней старения.
На основе эволюционных представлений возникло несколько теорий старения. Широкую известность получила теория А. Вейсмана о бессмертии простейших и половых клеток многоклеточных и о приспособительном характере старения и смерти — старые индивидуумы конкурируют с молодыми, что приводит к уменьшению репродуктивного потенциала популяции. Не менее значимыми были и представления И. И. Мечникова о том, что в процессе эволюции признак, сначала имевший адаптивное значение, впоследствии может стать источником вредных воздействий на организм, что ведет к болезням и старению (подробнее его взгляды рассмотрены ниже). Исследования по биохимии и биофизике привели к возникновению представления, что старение является результатом расходования какого-то жизненного фермента (О. Бючли), утрате определенных химических веществ (Дж. Лёб), дегидратации тканевых коллоидов (М. Рубнер, В. Ружичка), накопления вредных продуктов обмена (А. Каррель), изнашивания организма (Р. Гертвиг). Эмбриологи считали, что старение обусловлено замедлением роста и ослаблением способностью к обновлению клеток из-за их дифференциации (Ч. Минот, Р. Рёссле, Е. А. Шульц).
Нейрофизиологи рассматривали старость как результат функциональных нарушений высшей нервной деятельности (И. П. Павлов и его школа). Применение ранних вариантов теории систем для исследования проблемы старения привело к выводу о неизбежности возникновения старения вследствие крайне высокой вероятности появления сбоев в процессе функционирования сложной системы (А. А. Богданов, Н. А. Белов). Обобщение демографических данных дало начало широкому применению математических методов для описания процесса старения, к созданию научного базиса для исследований по биологии продолжительности жизни (Б. Гомперц, У. Мейкем, К. Пирсон, Р. Пирл). На основе теоретических представлений о механизмах старения стали предприниматься попытки разработки и применения методов для увеличения продолжительности жизни (см. ниже), эффективность которых, однако, является достаточно сомнительной. Началось организационное оформление геронтологии — возникли геронтологические и гериатрические научные школы и общества, стали проводиться специализированные конференции, выходить периодические издания, всецело посвященные проблеме старения и продления жизни. Появились современные термины как для науки и знании о старении и продлении жизни — геронтология, так и для применения этого знания в медицинской практике — гериатрия. Первый из них был введен И. И. Мечниковым в книге «Этюды о природе человека», впервые опубликованной на французском языке в 1903 г., а второй — И. Нашером в одноименной статье, опубликованной в New York Medical Journal в 1909 г.
Тогда же в геронтологии стали использоваться аналитические модели. В 1825 г. Б. Гомперцем была предложена функциональная зависимость для описания вымирания популяции, которая в 1860 г. была модифицирована У. Мейкемом. С тех пор эта зависимость (уравнение Гомперца-Мейкема) является краеугольным камнем биологии продолжительности жизни. Позднее (в 10 — 20 гг. 20 в.) Н. А. Беловым была предложена аналитическая модель для описания старения в сложной системе. Аналитическое описание популяций, сделанное в 20-х гг. 20 в. В. Вольтеррой и А. Лоткой, заложило основы для современных аналитических исследований эволюционного аспекта феномена старения на популяционном уровне.
4.2. Первые попытки продлить жизнь, основанные на биологических исследованиях
Одним из пионеров поиска методов продления жизни на основе эволюционных представлений о природе старения был великий русский биолог, И. И. Мечников (1845 — 1916). Согласно его представлениям в процессе эволюции признак, сначала имевший адаптивное значение, впоследствии в результате возникающих в процессе его функционирования побочных эффектов или из-за изменений условий существования может стать источником вредных воздействий на организм. Это в конечном счете приводит к дисгармонии в функционировании организма, к болезням и старению (он различал преждевременное и нормальное старение). Для целей настоящей работы важно отметить, что Мечников понимал связь между наличием сознания и желанием жить как можно дольше. В частности он писал: «Из всех дисгармоний человеческой природы самая главная есть несоответствие краткости жизни с потребностью жить гораздо дольше». Возникает же эта дисгармония как результат того, что у человека «высокое умственное развитие обусловило сознание неизбежности смерти, а животная природа сократила жизнь вследствие хронического отравлениями ядами». Яды здесь следует понимать в широком смысле, так как он считал, что «весьма вероятно, что естественная смерть также сводится к отравлению — только не чуждыми организму бактериями, а самими элементами нашего тела». Аналогом такого самоотравления может служить повреждение клетки свободными радикалами, считающимися сейчас одной из главных причин старения, т. е. тут Мечников был недалеко от истины. Самоотравление же происходит, по его словам, из-за того, что «человек, явившейся в результате длинного цикла развития носит в себе явные следы животного происхождения. Приобрев неведомую в животном мире степень умственного развития, он сохранил многие признаки, оказавшиеся ему не только ненужными, но прямо вредными».
Метод же, предложенный Мечниковым для продления жизни, был связан с его работами в области микробиологии. По его мнению, главнейшей дисгармонией, ведущей к преждевременному старению, является толстый кишечник, первоначально служивший для переваривания грубой растительной пищи, а при изменении характера питания стал своего рода инкубатором для гнилостных микроорганизмов, продукты обмена которых отравляют организм, тем самым сокращая продолжительность жизни. В связи с этим для увеличения продолжительности жизни он предлагал употреблять кисломолочные продукты (йогурт и т. п.), угнетающие деятельность гнилостных бактерий. Как перспективный метод он даже предлагал производить хирургическое удаление толстой кишки. Тем не менее Мечников не абсолютизировал роль кисломолочных продуктов в предотвращении преждевременного старения (тем более нормального старения) — это была часть в его интегральном подходе к увеличению продолжительности жизни, который он называл ортобиозом — правильным образом жизни. Этот подход должен включать в себя гигиенические меры, а также, в перспективе, изменение природы человека и общественного устройства. Это его предвидение, как и его гипотеза о самоотравлении, тоже может оказаться верным: одним из наиболее вероятным способом увеличения продолжительности жизни считается использование методов генной инженерии, что и есть «изменение природы человека».
Без всякого сомнения, как практические, так и теоретические работы Мечникова заложили основы современной геронтологии, вывели проблему изучения старения из традиционной медицинско-гигиенической плоскости на широкий путь эволюционно биологических исследований. Однако, вряд ли основной метод, предложенный Мечниковым (т. е. использование йогурта), может привести к значимому и достоверно регистрируемому продлению жизни.
Другим направлением продления жизни в конце 19 в. и в начале 20 в. было использование экстрактов половых желез. Оно основывалось на очевидной связи между здоровьем и половой активностью, т. е. считалось, что стимуляция половой функции может привести к удлинению жизни (стоит заметить, что еще даосы использовали вытяжки из семенников в пищу). Возникновение интереса к этому методу связано с именем французского физиолога Ш. Броун-Секара (1818 — 1894), вводившего себе (правда, после опытов на животных) инъекции вытяжки из семенников собак и кроликов и утверждавшего, что он помолодел на 30 лет. Метод стал ограниченно применяться. В дальнейшем австрийский хирург О. Штейнах (1861 — 1944) пытался стимулировать функции семенников хирургическим путем, включая пересадку семенников животных. В широкую практику пересадку семенников человекообразныобезьян ввел русский хирург (работал в основном во Франции) С. Воронов (1866 — 1951). Еще более известен метод «клеточной терапии» швейцарского врача П. Ниханса (1882 — 1971), использовавшего тканевые экстракты (в том числе эмбриональные) для омоложения десятков тысяч людей, включая достаточно известных (папа Пий 12, У. Черчилль, Ш. де Голль, К. Аденауэр, С. Моэм, Т. Манн).
Эффективность подобных методов в основном кратковременная, нет достаточных данных об увеличении продолжительности жизни в результате их применения, хотя они содержали рациональное зерно и эксперименты по использованию тканевой (основанной на феномене активации клеток продуктами распада клеток того же типа, что вполне объяснимо, так как смерть клетки должна компенсироваться увеличением активности и/или размножением других клеток) и гормональной терапии продолжаются.
Нужно отметить, что в нашей стране интерес к применению экстрактов половых желез вылился в серьезные исследования, связанные с возможностью регуляции процессов старения, продолжение которых в наше время привело к разработке достаточно эффективных методов продления жизни.
Начало этих исследований можно отнести к работам професора А. Пеля. В созданном им в С.-Петербурге Институте опотерапии (термин, применявшийся для обозначения использования препаратов (вытяжек или экстрактов) или употребления в пищу тех органов, на которые хотели оказать лечебное воздействие) больным для восстановления сил и продления их жизни вводился препарат спермин, выделяемый из семенной жидкости животных. Позднее в начале 20 в. под руководством и при участии С. И. Метальникова исследовались процессы старения в культурах клеток простейших, а также обсуждались возможности регуляции старения на клеточном уровне. А. В. Догель по результатам своих исследований симпатической нервной системы сделал вывод, что ее перерождение в старости ведет к ослаблению трофических влияний нервной системы на ткани и в них наступает расстройство обмена веществ. Н.А. Белов разработал системный подход к организму, где важная роль принадлежит регуляторным взаимодействиям между его частями. Э. Бауэр считал, что старение является следствием ограничения роста, что в свою очередь следует из свойств молекул белка. Следствием же его представлений об организме как неравновесной системе являлось важность процессов регуляции для поддержания его устойчивости. И.И. Шмальгаузен в своих ранних работах также обосновывал старение процессами, регулирующими рост. Он считал, что жизнь можно продлить гормональными воздействиями.
В это же время началось складываться представление о важной роли центральной нервной системы в развитии практических всех патологий (возникшее во многом как ответ на теорию целлюлярной патологии Р. Вирхова). Его зарождение связано с работами И. М. Сеченова, повлиявших на С.П. Боткина, который в свою очередь привлек для изучения этой проблемы И.П. Павлова. Его собственные исследования, а также работы его учеников (А.В. Тонких, Л.А. Андреева, Д.И. Соловейчика, А.Д. Сперанского, М.К. Петровой и др.) заложили основы представления об организме как о саморегулирующейся системе, о неравномерности изменения нервной регуляции с возрастом. М.К. Петрова, обобщая результаты многолетних экспериментов школы Павлова по изучению возрастной физиологии, сделала вывод о ведущей роли нервной системы в генезе старения.
В тесной связи (благодаря методологическим установкам С.П. Боткина) с экспериментально-физиологическим направлением исследований связи нервной деятельности и патологических процессов (в том числе связанных со старением) развивались клинические исследования. Основным сторонником этого направления был выдающийся отечественный клиницист Г.Ф. Ланг. Хотя основной темой его исследований была гипертония (он является автором нейрогенной теории гипертонической болезни), но также он уделял внимание и механизмам возникновения атеросклероза, сахарного диабета и других болезней. Его учеником В. Г. Барановым была создана ленинградская школа эндокринологов.
Еще одним вариантом активации функций организма и, соответственно продления жизни, еще со времен средневековья считалось употребление человеческой крови (она считалась переносчиком жизненного тепла). Делались тогда и попытки переливания крови, но безуспешные. С другой стороны, в начале 20 в. была популярна теория о том, что бессмертие одноклеточных организмов может быть объяснено их возможностью конъюгировать друг с другом (в современном понимании — осуществлять обмен генов).
Также считалось, что могут конъюгировать между собой и подвижные элементы крови. Отсюда следовал логический вывод, что конъюгация клеток крови разных людей может привести к продлению их жизни. Исследование этой возможности связано с работами российского врача, философа (основателя теории систем) и революционера А. А. Богданова (1873 — 1928). Богданов считал, что старение вызывается случайными нарушениями деятельности отдельных органов, которые ослабляют отдельные звенья (части системы) организма. Причем самым критичным к таким нарушениям является самое слабое звено. Следовательно, воздействуя на него, можно эффективно замедлить процесс старения. Самым слабым звеном он считал подсистему, связывающую другие системы организма — кровеносную систему. В качестве воздействия на нее он выбрал обмен кровью между двумя людьми с целью осуществления конъюгации элементов крови. Для реализации своей концепции Богданов, будучи одним из видных революционеров и располагавший достаточными возможностями, основал Институт переливания крови в 1926 году. Но, вскоре он погиб, проводя эксперимент на себе.
Его ученик, известнейший советский геронтолог, академик А.А. Богомолец (1881 — 1946), восприняв его основные идеи, несколько модифицировал их. По его мнению, ведущая роль в старении принадлежит не только крови, а вообще всей соединительной ткани организма. Также он модифицировал и метод борьбы со старением. Им стала активация функций соединительной ткани путем ввода антител к этой ткани. При этом распад части клеток в результате иммунного ответа ведет к активации других клеток этой ткани. По сути этот механизм подобен клеточной терапии, и подобно последней эффективность метода Богомольца для продления жизни совершенно не очевидна. В последующее время этот метод был замещен гормональной терапией и иммуностимуляцией.
ПЕРИОД КИБЕРНЕТИЧЕСКИХ МОДЕЛЕЙ
5.1. Формирование современной геронтологии
Формирование современной, научной геронтологии, включающей в себя исследование процессов старения и поиск методов продления жизни на основе экспериментальных фактов и всесторонне обоснованных научных теориях, произошло в 50-е гг. 20 в. Это стало результатом создания современной биологии, что, в свою очередь, стало следствием возникновения молекулярной биологии — открытия ДНК, механизма биосинтеза белков и т. д. Необходимо отметить, что эти открытия произошли во многом благодаря развитию экспериментальной техники, играющей ведущую роль и в геронтологических исследованиях. Открытие молекулярных законов жизни и обобщение множества экспериментальных данных привели к тому, что постепенно разнообразные теоретические представления о механизмах старения стали «фокусироваться» вокруг теорий, согласно которым старение является следствием процессов, происходящих на молекулярных уровнях организации живой материи. В частности свидетельством тому является последний конгресс Международной ассоциации биомедицинской геронтологии, где большинство докладов было посвящено свободно-радикальной теории старения. При этом характерно, что наиболее развитые современные теории старения, признавая ведущую роль молекулярных процессов, в то же время большое внимание уделяют его системным и эволюционным аспектам, а также использованию аналитических и кибернетических моделей.
На протяжении всего данного периода постепенное развитие знания о механизмах старения на основе обобщения (включая широкое использование математических методов) все возрастающего объема экспериментальных данных и результатов клинического применения методов продления жизни неуклонно приближало ученых к разгадке феномена старения и разработке эффективной терапии старения. Однако, очень большая сложность биологических систем, многообразие взаимосвязанных факторов, влияющих на старение, препятствовало и все еще препятствует быстрому прогрессу в этом направлении, совершению качественного скачка в разрешении проблемы старения. Тем не менее рост геронтологического знания привел к тому, что в этот период геронтология оформилась как вполне самостоятельная наука со своей проблематикой и институализированным научным сообществом со специализированными исследовательскими центрами, периодическими изданиями, научными конференциями и т. п. Другим важным результатом стал тот факт, что в последнее время стало меняться отношение общества к проблеме продления жизни. Примером могут служить публикации в американском журнале «Тайм» в 1988 и 1996 гг. В первой из них, озаглавленной «Старость в радость», проводится мысль о том, что главная цель сегодняшней геронтологии состоит не столько в увеличении верхнего предела человеческой жизни, а в том, чтобы сделать жизнь пожилых людей эмоционально насыщенной и менее тягостной в физическом отношении. Содержание же второй статьи передает ее подзаголовок на обложке журнала: «Сегодня наука ищет способы сохранить нас вечно молодыми».
Подробно состояние, основные достижения и концепции современной геронтологии рассмотрены в следующих главах книги. В данной же главе ниже будут кратко рассмотрены некоторые перспективные направления исследований, связанных с решением проблемы радикального продления жизни.
5.2. Необходимость автоматизации геронтологических исследований
Как уже отмечалось выше, старение является очень сложным феноменом, включающем большое количество взаимозависимых процессов. Так, по некоторым оценкам для корректировки старения нужно воздействовать на большое количество генов: от нескольких сотен до нескольких тысяч. Помимо всего прочего это означает, что понимание роли одного из них (например, гена теломеразы) и воздействие не него в принципе не способно решить проблему старения, а приведет лишь к сравнительно незначительному продвижению в направлении ее решения. Вследствие подобной сложности необходимым предварительным условием корректировки структуры и функций организма на молекулярном уровне (корректировка на клеточном и организменном уровне в конечном счете все равно сводится к молекулярным изменениям) является преодоление гносеологических препятствий, связанных со сложностью познания процессов старения. Прорыва в этом направлении можно добиться используя компьютерные технологии, которые могут значительно увеличить аналитические возможности отдельного ученого или небольшого научного коллектива. С их помощью можно собрать воедино множество сведений о механизмах старения, которые должны включать себя как клинические и экспериментальные данные, так и теоретические концепции, и проанализировать их автоматическими средствами. Основой для реализации такого подхода является разработка соответствующих средств (т.е. компьютерных программ), которые должны обладать следующими возможностями:
- 1) формализации существующих теоретических концепций (концептуальных моделей), описывающих процесс старения, при помощи средств автоматизированного анализа систем;
- 2) построения на основе формализованных концептуальных моделей и соответствующих экспериментальных данных имитационных (кибернетических) моделей старения в различных живых системах;
- 3) верификации и исследования имитационных моделей;
- 4) обобщения и анализа полущенных результатов при помощи средств искусственного интеллекта (экспертные системы, нейронные сети и т.п.).
Другим важным условием реализации подобного подхода является организация совместной работы ученых-экспертов, с целью формализации их знаний. Это возможно эффективно реализовать посредством международной компьютерной сети Интернет. Поскольку для осуществления начальных этапов подобного подхода (получение и формализация знаний ученых-экспертов) имеются все необходимые технические условия, а адаптация соответствующих программных средств для нужд геронтологии представляется вполне реальной задачей, то можно ожидать, что такой подход способен принести достаточно значимые результаты в относительно короткие сроки даже при сравнительно небольшой затрате организационных усилий и финансовых ресурсов.
Результаты автоматизированного системного анализа механизмов старения помогут, во-первых, качественно улучшить планирование экспериментов для получения недостающих данных о старении, что позволит более эффективно использовать имеющиеся исследовательские ресурсы, и, во-вторых, определить «точки», где вмешательство в процесс старения может быть наиболее эффективно. Само же такое вмешательство может быть осуществлено на уровне регуляции генной активности низкомолекулярными веществами. Однако, весьма вероятно, что такой регуляции будет недостаточно, так как она позволяет лишь полностью реализовать существующий потенциал антистарения, который эволюционно ограничен, и необходимо будет осуществлять «перепроектировку» множества структурных и регуляторных генов средствами генной инженерии. Хотя в такого рода перепроектировку может быть вовлечены сотни и даже тысячи генов, тем не менее, при наличии необходимого количества биологических данных и мощных компьютеров, позволяющих создавать и исследовать высокоточные модели биологических систем, решение даже такой сложной задачи представляется вполне осуществимым.
Кроме методов генной инженерии для перестройки деятельности организма на клеточном и молекулярном уровнях могут быть использованы методы нанотехнологии. Поскольку их применение представляется самым перспективным направлением, дающим наиболее высокие шансы для достижения «вечной молодости», эта проблема детально рассмотрена в следующем разделе.
5.3. Перспективы применения достижений нанотехнологии для решения проблемы продления жизни
Как уже указывалось выше, в современной геронтологии доминирующей становится точка зрения, что первичные причины старения имеют молекулярную природу. Вместе с тем, технический прогресс привел к тому, что в настоящее время человечество находится на пороге достижения возможности свободного манипулирования с отдельными атомами и молекулами. Анализ развития этих тенденций, ведущих к «овладению» молекулярным уровнем организации живой материи, позволяет предположить, что через несколько десятилетий подходы к лечению старения претерпят коренные, революционные изменения и, в конечном счете, их развитие приведет к решению проблемы старения.
Большинство молекул, находящихся в водных растворах, со временем изменяются. В основном это происходит в результате взаимодействия с другими молекулами и атомами (тепловое движение, химические реакции, альфа-радиация) и под действием электромагнитных излучений (ультрафиолет, гамма-радиация). Молекулы могут распадаться на атомы, превращаться в другие молекулы, претерпевать структурные изменения. В случае сложных молекул последнее подразумевает, что в функциональном отношении молекула остается той же самой. При этом, однако, эффективность выполнения функции может меняться. Ухудшение функционирования молекулы со временем под действием повреждающих факторов может быть рассмотрено как старение на молекулярном уровне.
Одним из основных факторов, вызывающих молекулярные повреждения в живых клетках являются свободные радикалы — высокореакционные молекулы, имеющие неспаренный электрон. Они образуются в качестве побочного продукта в процессе выработки энергии в дыхательной цепи митохондрий, а также в ряде других реакциях обмена веществ. Другим опасным фактором является неспецифическое взаимодействие клеточных макромолекул с глюкозой, которая также является соединением, образующемся во многих биохимических реакциях. Сильное разрушающее действия на макро-молекулы оказывают и молекулы воды, так как часть из них обладают очень большими скоростями движения (вследствие статистического распределения скоростей движения молекул воды в жидкой фазе) и следовательно могут легко взаимодействовать с другими молекулами.
Эти и ряд других повреждающих воздействий приводит к окислению липидов клеточных мембран, инактивации белков-ферментов, гликозилированию структурных белков и образованию между ними поперечных сшивок, мутациям генов. Это, в свою очередь, ведет к постепенному разрушению структуры и ухудшению функционирования клетки: нарушается целостность и проницаемость мембран, падает ферментативная активность, клетка засоряется продуктами обмена, нарушается синтез белков и регуляция клеточных процессов (программируемая клеточная гибель и другие механизмы ограничения срока жизни клетки по сути являются защитной реакцией организма от накопления таких молекулярных повреждений). Причем, эти процессы характеризуются положительной обратной связью — неправильное или ухудшенное функционирование молекул приводит к увеличению потока повреждающих воздействий (следствием наличия такой обратной связи является зависимость скорости смертности от самой смертности, послужившая основной гипотезой для вывода уравнения Гомперца). К тому же, в связи с ухудшением работы клеток и отмиранием (апоптозом) части из них нарушаются регуляторные процессы и на организменном уровне, что в результате обратной связи приводит к еще большему увеличению повреждающих воздействий на молекулярном уровне. Все это ведет к катастрофическому нарушению регуляции, появлению системных «болезней старения» (большинство форм рака, атеросклероз, гипертония, сахарный диабет), ослаблению сопротивляемости организма стрессорным воздействиям, что с неизбежностью приводит к смерти.
В период возникновения жизни, в «первичном бульоне» основные молекулы жизни (белки и нуклеиновые кислоты) неизбежно должны были подвергаться повреждающим воздействиям. (Поскольку эти молекулы старели еще до того как появилась возможность для их саморазмножения, т. е. до возникновения жизни, то можно сказать, что старение древнее жизни.) Следовательно, возникновение механизмов защиты от них (антистарения) было существенно необходимо для успешного развития жизни. И далее в процессе эволюции происходила конкуренция старения и антистарения.
В качестве примера механизмов антистарения можно привести осуществляемое супероксиддисмутазой ферментативное превращение супероксидных радикалов в перекись водорода, которая затем расщепляется каталазой на воду и кислород. Другими примерами могут служить группы ферментов, восстанавливающих поврежденные участки молекул нуклеиновых кислот (нуклеазы, полимеразы, лигазы) и расщепляющие окисленные белки (протеиназы и пептидазы) (подробнее старение и антистарение на молекулярном уровне рассмотрено ниже, в части, посвященной описанию современных концепций в геронтологии).
Все эти механизмы не обеспечивают абсолютной защиты от повреждающих воздействий. Во многом это объясняется тем, что эволюция действует методом проб и ошибок, т. е. нужное приспособление не появляется сразу и в законченном, совершенном виде. В принципе, можно представить, что практически нестареющий организм мог бы появиться (возможно, примером приближения к такому состоянию являются некоторые одноклеточные организмы. Но эволюционный «поиск» долгоживущих организмов и закрепление его результатов возможны только в том случае, если такой организм будет иметь эволюционные преимущества, выражающиеся в повышении выживаемости и увеличении численности вида (иначе случайно «найденный» признак «потеряется» в следующих поколениях). Однако, для благополучия вида вполне достаточно, чтобы отдельный организм мог достичь репродуктивного возраста и оставить потомство, а что будет с организмом дальше для вида не имеет значения (или имеет пренебрежительно малое значение). Говоря другими словами, путь повышения репродуктивности и жизнеспособности в молодом возрасте проще и выгоднее для вида (а значит и более вероятен), чем увеличение продолжительности жизни отдельной особи (для этого необходим случайный поиск и, по всей вероятности, скоординированное изменение большого количества функций, вероятность чего очень мала).
Таким образом, из всего вышеизложенного следует, что для эффективной борьбы со старением нужно системно, с учетом всех взаимосвязей на клеточном и организменном уровнях совершенствовать геропротекторные функции организма (прежде всего повышая качество работы «молекул антистарения» и систем, вовлеченных в регуляцию этих процессов), а также видоизменять структуры «молекул старения» таким образом, чтобы при их работе образовывалось как можно меньше опасных побочных продуктов. Часть необходимые для этого операций можно будет проводить средствами генной и белковой инженерии. Однако более универсальным и эффективным средством может оказаться протезирование и хирургия на молекулярном уровне посредством нанотехнологии.
Нанотехнология определяется как технология, основанная на возможности манипулировать отдельными атомами и молекулами с целью создания достаточно сложных объектов, структура которых может быть описана с точностью до одного атома. Этот термин также используется и для обозначения области науки и техники, связанной с разработкой устройств, позволяющих производить подобные манипуляции. Название нанотехнология происходит от слова нанометр — одна миллиардная доля метра (величина равная нескольким межатомным расстояниям).
Впервые мнение о принципиальной возможности построения любых материальных объектов «атом за атомом» и о неизбежности развития технологии в этом направлении высказал известный американский физик, лауреат Нобелевской премии, Р. Фейнман в 1959 г. в своей речи на ежегодном собрании Американского физического общества. Первым шагом на пути реализации таких возможностей стало создание в 1981 г. сотрудниками фирмы IBM Г. Биннигом и Г. Рорером сканирующего электронного микроскопа (за это изобретение им была присуждена Нобелевская премия). Принцип действия этого устройства состоит в следующем. При движении тонкой иглы на очень малом расстоянии над поверхностью, проводящей электричество, из-за эффекта квантового туннелирования электронов возникает ток утечки. Поддерживая этот ток на постоянном уровне путем приближения иглы к поверхности или удаления от нее можно получить профиль поверхности с атомарным разрешением. Если же на иглу подать большее напряжение, чем нужно для измерения профиля, то при определенных условиях атом может оторваться от поверхности и присоединиться к игле, что позволяет перенести его в другое место и опустить обратно на поверхность. В дальнейшем был создан ряд устройств со сходными принципами работы. Для биологических исследований наибольший интерес представляет атомно-силовой микроскоп, принцип действия которого основан на механическом взаимодействии иглы с веществом (т. е. в этом случае не требуется, чтобы исследуемый объект проводил электрический ток).
В настоящее время различным аспектам нанотехнологии посвящены многочисленные исследования. Основные усилия ученых сконцентрированы на уменьшении размеров вычислительных устройств, создании механических устройств субмикронных размеров (электрических двигателей, трансмиссий и т. п.) и синтезе наноструктур химическими методами. Применяются достижения этих направлений нанотехнологии в биологии и медицине — например, для изготовления сверхчувствительных биосенсоров для детекции молекул.
Однако, по всей вероятности, наиболее перспективными с точки зрения применения в медицине могут оказаться результаты исследований в области, называемой молекулярной нанотехнологией. Большой вклад в возникновение интереса к данному направлению исследований и в его дальнейшей прогресс внес американский ученый Э. Дрекслер, первая статья которого по этой проблеме была опубликована в 1981 г. Основной задачей здесь является создание молекулярных роботов — устройств молекулярных размеров, снабженных детекторами, манипуляторами и встроенным компьютером. Планируется, что они будут изготовляться из искусственно синтезируемых углеродных цепочек или на основе биологических макромолекул (далее в основном будет анализироваться последний подход). Принципы их работы будут напоминать механизмы действия белковых молекул. В основном это будут конформационные изменения молекулярной структуры, результатом которых может быть детекция определенной молекулярной поверхности, изменение химических связей в обнаруженных и опознанных молекулах, а также изменение собственного состояния робота (ряд последовательных изменений состояния эквивалентен произведению некоторых вычислительных и логических операций).
Для медицинских применений помимо возможности детекции и манипулирования биомолекулами важной проблемой является энергоснабжение молекулярных роботов и их взаимодействие во время нахождения внутри организма с находящимся вне организма суперкомпьютером, который управляет их работой. Здесь перспективным представляется использование магнитного поля, поскольку биологические ткани прозрачны для него (другим вариантом может быть использование акустических волн). Магнитное поле может изменять структуру молекулярных роботов, заряжая его энергией и сообщая информацию, а для сообщения информации управляющему компьютеру молекулярный робот может сам изменять свою структуру, что будет зарегистрировано датчиками, расположенными вне тела человека. Аналогом такого подхода является томография на основе ядерного магнитного резонанса — метод, который сейчас широко используется для получения трехмерных изображений внутренних органов в реальном времени.
Первоначально основными элементами технологии изготовления молекулярных роботов будут биотехнология и органический синтез. Процесс их изготовления будет напоминать существующие биотехнологические методы, которые на сегодняшний день выглядят примерно так: синтезируется ген, кодирующий структуру белка (в будущем — молекулярного робота); этот ген внедряется в бактерии, которые размно-жаются и синтезируют белок в необходимом количестве; далее (при необходимости) белок модифицируется химическим способом. По мере развития нанотехнологии на смену этому процессу придет другой, основанный на саморазмножении молекулярных роботов. Такая способность будет заложена либо в молекулярный робот сложной конструкции, либо к саморазмножению будет способен коллектив относительно простых роботов, отдельные группы которого будут специализированы на выполнении какой-либо одной функции — аналогом такого коллектива может быть пчелиная или муравьиная семья.
Главной проблемой, препятствующей разработке и внедрению молекулярных роботов является их проектирование. Основной элемент такого проектирования — моделирование поведения роботов. Эта задача примерно того же порядка сложности, что и моделирование динамики белковых молекул. Хотя его алгоритмы известны, но большой размер молекул не позволяет осуществить их моделирование в приемлимые сроки при помощи современных компьютеров. Оценки тенденций развития вычислительной техники позволяют предположить, что компьютеры смогут достичь мощности, необходимой для такого моделирования лишь в 2010-2015 гг.
Поскольку другие элементы технологии изготовления белковоподобных молекулярных роботов практически уже существуют, можно прогнозировать, что молекулярная нанотехнология может быть реализована вскоре после этого времени. С учетом необходимости разработки конкретных типов молекулярных роботов и проведения дополнительных молекулярно-биологических исследований (направленных как на получение недостающих данных о функционировании биомолекул и клеток, так и на экспериментальное тестирование взаимодействия молекулярных роботов и клеточных структур) можно ожидать, что описанные ниже возможности будут доступны во второй четверти 21 в. Однако, при благоприятном развитии событий отдельные элементы описанной ниже процедуры лечения старения могут начать внедряться в практику уже в конце следующего десятилетия. Например, это может быть противодействие какой-либо одной причине старения посредством простых, автономно функционирующих молекулярных роботов, конструкция которых не сильно отличается от таковой обычных белков. В отличие от более сложных, универсальных роботов их разработка (по крайней мере, в принципе) может быть проведена без больших вычислительных затрат — сочетанием компьютерной «искусственной эволюции» и биохимической «эволюции в пробирке».
Принимая во внимание прогресс нанотехнологии, а также то, что для противодействия старению необходима системная, массовая коррекция структуры организма на молекулярном уровне, можно предположить как будет выглядеть процесс лечения старения через несколько десятилетий.
Основными составными частями геронтологической клиники будущего будут устройство для синтеза молекулярных роботов, суперкомпьютер, прибор для организации взаимодействия между роботами и суперкомпьютером (типа магнитно-резонансного томографа). Безусловно, для управления ими будет необходим высококвалифицированный персонал. Процесс лечения будет происходить примерно следующим образом. Пациенту вводится инъекция молекулярных роботов, затем он помещается в «томограф», и в суперкомпьютере запускается программа для диагностики и лечения. По окончании лечения молекулярные роботы инактивируются и выводятся из организма. Пока трудно оценить длительность одной процедуры и их количество. Эти параметры будут зависеть от стадии процесса старения, от производительности и качества работы молекулярных роботов, от глубины познания механизмов старения и т. п.
Во время лечения молекулярные роботы будут выполнять следующие операции: узнавание определенных фрагментов молекул и клеток, разрыв или соединение частей молекул, добавление или удаление молекулярных фрагментов, полная разборка и сборка молекул и клеточных структур по определенной программе. В результате этих операций будет осуществлено полное восстановление всех повреждений, произошедших в клетке в процессе старения. Например, будут разобраны молекулярные сшивки в липидных мембранах и белках, произведена их «декарамелизация» (удаление неспецифически присоединившихся к ним молекул глюкозы), удалены накопившиеся вредные продукты обмена, восстановлена правильная последовательность нуклеотидов в ядерной и митохондриальной ДНК, восстановлена структура хроматина, характерная для здорового состояния клетки.
Дополнительно к такой процедуре лечения старения (молекулярной хирургии) можно будет производить молекулярное протезирование — долговременный ввод в клетку автономно функционирующих молекулярных роботов, которые будут предотвращать молекулярные повреждения или лечить их сразу после возникновения (например, инактивировать ускользнувшие от естественных защитных систем свободные радикалы).
Также молекулярные робот могут участвовать (как наряду с генной инженерией, так и вместо нее) в перепроектировке генома клетки — в изменении генов или добавлении новых для усовершенствования функций клетки. Причем в конечном счете может оказаться, что после такого усовершенствования старение замедлится настолько, что в его лечении уже не будет необходимости. Однако, значительная перепроектировка генома может привести к искусственной трансформации Homo sapiens в другой биологический вид, что может вызвать негативную общественную реакцию или оказаться нежелательным по иным причинам. В то время как описанное выше нанотехнологическое лечение старения не ведет к таким последствиям, и с этой стороны оно имеет преимущество перед генно-инженерными методами.
Тут может возникнуть закономерный вопрос: будет ли лечение в геронтологической клинике будущего доступно для любого человека? Для ответа на этот вопрос нужно рассмотреть прогнозы относительно немедицинских аспектов применения нанотехнологии. Предполагается, что нанотехнологические устройства смогут полностью заменить существующие промышленные и сельскохозяйственные технологии, во много раз увеличив их производительность и снизив затраты. Все операции будут сведены к перестройке расположения атомов в исходных материалах, получаемых из воды, воздуха и песка. Причем поскольку молекулярные роботы, производящие эти операции, будут использовать солнечную энергию и изготовлять самих себя, затраты на обеспечение всех людей пищей, одеждой, жильем, средствами передвижения и энергией (топливом) будут ничтожными. Среди всего прочего это будет означать дешевизну медицинского оборудования и легкость организации его массового производства. Это позволяет предположить, что и в целом стоимость медицинского обслуживания будет невелика, и оно будет доступно практически каждому человеку. Следует также отметить, что применение нанотехнологии в космонавтике и планетной инженерии позволит решить проблему перенаселения Земли, которая часто приводится в качестве аргумента против исследований по проблеме продления жизни.