52

Биохимия питания. Макро-, микроэлементы и витамины

БИОХИМИЯ ПИТАНИЯ. МАКРО- И МИКРОЭЛЕМЕНТЫ

Все минеральные вещества в зависимости от их концентрации, подразделяются на макро- и микроэлементы. Содержание макроэлементов превышает 50 мг/кг массы тела (натрий и калий, кальций, магний, фосфат, хлорид, сульфат). Содержание микроэлементов составляет менее 50 мг/кг массы тела (медь, цинк, селен, кобальт и др.). К микроэлементам относят также и железо, хотя его концентрация превышает указанную величину.

МАКРОЭЛЕМЕНТЫ

Электролиты К+ и Na+ важны для поддержания электролитного баланса, надлежащего осмотического давления; они создают определённые условия растворимости, участвуют в механизмах возбудимости, влияют на обменные процессы путём активирования или ингибирования ферментов, используются в процессах минерализации костей скелета и зубов.

Концентрация электролитов вне и внутри клетки существенно различается: натрий и кальций преобладают во внеклеточном пространстве, калий и магний — внутри клетки.

Кальций

Общее содержание кальция в плазме крови2,2–2,7 ммоль/л. Половину составляет диффузионный Са2+ (способен проходить через биомембраны), часть Са2+ связана с белка­ми крови (недиффузионный кальций), некоторое количество находится в составе цитратов и фосфа­тов плазмы крови. Основное депо кальция — Са-апатиты костной ткани. Кальций всасывается из кишечника в кровь с помощью специального Са2+-связывающего протеина, синтезируемого слизистой кишечника. Этот бе­лок осуществляет свою функцию совместно с Са2+-зависимой АТФ-азой. Сти­мулятором синтеза Са2+-связывающего протеина является 1,25-(ОН)2-D3 (кальцитриол, витамин D3).

Роль кальция в организме. Соли кальция составляют основу скелета и зубов. Ионы кальция прини­мают участие в многочисленных процессах: регуляции нервно-мышечной возбудимости, сократительной и секретор­ной активности, проницаемости клеточных мембран. Са2+ активирует процесс свёртывания крови, адгезию и рост клеток. Наряду с циклическими нуклеотидами Са2+ счи­тается вторичным посредником в реализации механизма действия гормонов.

Регулируется уровень кальция в крови гормонами-антагонистами: паратирином и тиреокальцитонином, а также витамином D.

Кальцитонин

Кальцитонин секретируется С-клетками щитовидной железы (ЩЖ). Это — полипептид (32 аминокислоты). Регулятор секреции — повышение концентрации Са++ в крови более 2,25 ммоль/л. Основной эффект гормона — снижение уровней Са++ и фосфора в крови. Он ускоряет минерализацию костной ткани и стимулирует включение в неё фосфора, ингибирует активность и уменьшает количество остеокластов. В почках гормон, связываясь с
7-ТМС-(R), которые расположены в дистальных канальцах, усиливает выведение фосфатов и кальция.

Паратирин (паратгормон)

Гормон синтезируется паращитовидными железами. Он является полипептидом (84 аминокислоты). Краткосрочная регуляция секреции паратгормона осуществляется Са++, а в течение длительного времени — 1,25(ОН)2D3 cовместно с кальцием.

Паратгормон взаимодействует с 7-ТМС-(R), что приводит к активации аденилатциклазы и повышению уровня цАМФ. Помимо этого, в механизм действия паратгормона включаются Са++, а также ИТФ и диацилглицерол (ДАГ). Основная функция паратгомона заключается в поддержании постоянного уровня и Са++. Эту функцию он выполняет, влияя на кости, почки и (посредством витамина D) кишечник. Влияние паратгормона на остеокласты ткани осуществляется в основном через ИТФ и ДАГ, что в конечном итоге стимулирует распад кости. В проксимальных канальцах почек паратгормон угнетает реабсорбцию фосфатов, что ведет к фосфатурии и гипофосфатемии, он увеличивает также реабсорбцию кальция, т. е. уменьшает его экскрецию. Кроме того, в почках паратгормон повышает активность
1-гидроксилазы. Этот фермент участвует в синтезе активных форм витамина D.

Поступление кальция в клетку регулируется нейрогормональными сигналами, одни из которых увеличивают скорость вхождения Са + в клетку из межклеточного пространства, другие — высвобождения его из внутриклеточных депо. Из внеклеточного пространства Са2+ попадает в клетку через кальциевый канал (белок, состоящий из 5 субъединиц). Кальциевый канал активируется гормонами, механизм действия которых реализуется через цАМФ. Высвобождение Са2+ из внутриклеточных депо происходит под действием гормонов, активирующих фосфолипазу С — фермент, способный гидролизовать фосфолипид плазматической мембраны ФИФФ (фосфатидилинозитол-4,5- бифосфат) на ДАГ (диацилглицерол) и ИТФ (инозитол-1,4,5-трифосфат):

ИТФ присоединяется к специ­фическому рецептору кальцисомы (где Са2+ аккумулируется). При этом изменяется конформация рецептора, что влечёт за собой открытие ворот, запиравших канал для прохождения Са2+ из кальцисомы. Высвободившийся из депо кальций связывается с протеинкиназой С, активность которой увеличивает ДАГ. Протеинкиназа С, в свою очередь, фосфосфорилирует различные белки и ферменты, из­меняя тем самым их активность.

Ионы кальция действуют двумя путями: 1) связывают отрицательно заряженные группы на поверхности мембран, изменяя тем самым их полярность; 2) связываются с белком калмодулином, активируя тем самым множество ключевых ферментов обмена угле­водов и липидов.

Недостаток кальция приводит к развитию остеопороза (хрупкости костей). К недостатку кальция в организме приводят дефицит его в пище и гиповитаминоз Д.

Суточная потребность — 0,8–1,0 г/сут.

В обмене кальция наряду с паратирином и тиреокальцитонином исключительно важную роль играет витамин Д.

Витамин Д (кальциферол), антирахитический

В животных жирах содержится холекальциферол (витамин Д3), в растительных — эргокальциферол Д2 (кальциферол означает несущий кальций). В организме человека витамин Д3 образуется в качестве промежуточного продукта при биосинтезе холестерола
(из 7-дегидрохолестерола) в клетках кожи под влиянием УФ-лучей.

Метаболизм. Кальциферолы поступают в печень в составе хиломикронов. В печени образуется 25(ОН)-Д3, т. е. 25-гидроксихолекальциферол, затем 25(ОН)-Д3 попадает в кровь и, связываясь специфическим транспортным белком, переносится в почки. В почках образуется 1,25(ОН)23 (1,25-дигидроксихолекальциферол, или кальцитриол). Эта реакция активируется паратиреоидным гормоном. В реакциях гидроксилирования принимает участие витамин С. Витамин Д3 накапливается в жировой ткани.

Биохимические функции. Витамин Д3 можно рассматривать как прогормон, так как его действие во многом сходно с действием стероидных гормонов. Так, проникая в клетки-мишени, он связывается с белковыми рецепторами, которые мигрируют в ядро клетки. В энтероцитах этот гормон-рецепторный комплекс стимулирует транскрипцию иРНК, передающую информацию для синтеза белка-переносчика ионов кальция. При этом всасывание кальция осуществляется как путём облегченной диффузии с участием этого переносчика, так и путём активного транспорта (с помощью Са2+-АТФ-азы). Одновременно ускоряется и всасывание фосфора.

Кроме кишечника органом-мишенью активной формы витамина Д является костная ткань, где 1,25(ОН)23 стимулирует процесс деминерализации (синергично с паратирином).

Активация витамином 1,25(ОН)23 кальциевой АТФ-азы мембран почечных канальцев приводит к увеличению реабсорбции Са2+; возрастает и реабсорбция фосфатов.

Кальцитриол принимает также участие в регуляции роста и дифференцировке клеток костного мозга. Он обладает антиоксидантным и антиканцерогенным действием.

Гиповитаминоз. Недостаток витамина Д у детей приводит к заболеванию рахитом. Основные проявления этого заболевания сводятся к симптоматике недостаточности кальция. У взрослых недостаточность кальция в организме приводит к кариесу и остеомаляции (размягчение кости); у пожилых — к развитию остеопороза (снижение плотности костной ткани вследствие нарушения остеосинтеза).

Гипервитаминоз Д. Избыточный приём витамина Д приводит к интоксикации и сопровождается выраженной деминерализацией костей — вплоть до их переломов. Содержание кальция в крови повышается. Это приводит к кальцификации мягких тканей, особенно почек (вторичный гиперпаратиреоидизм).

Суточная потребность для детей колеблется от 10 до 25 мкг (500–1000 МЕ), у взрослых она ниже. Витамин Д3 содержится исключительно в животной пище. Богаты им рыбий жир, печень, желток яиц. В растительных маслах, молоке, дрожжах присутствует витамин Д2 (биологически он менее активен).

Фосфор

Наибольшее его количество (85 %) находится в костной ткани. Фосфор — важнейший вне- и внутриклеточный анион. Внутри клетки он связан с белками и липидами («органический фосфор»). Фосфор внеклеточного пространства находится в виде одно- и двузамещённых фосфатов, образующих в плазме крови буферную систему (поддержка нормы рН). Фосфор является одним из ингредиентов, определяющих буферные свойства мочи.

Участие в метаболизме. Органический фосфор входит в состав нуклеиновых кислот, коферментов, фосфолипидов, он служит энергоносителем, входит в состав вторичных посредников гормонов, участвует в образовании коферментной формы водорастворимых витаминов. В клетках путём фосфорилирования осуществляется регуляция активности регуляторных ферментов.

Обмен фосфора тесно связан с процессами поступления и освобождения из костей кальция: увеличение поступление Са2+ в организм приводит к повышению выведения фосфора с мочой. Контроль внеклеточной концентрации фосфора осуществляется почками: под влиянием паратирина реабсорбция фосфатов снижается. Основными причинами гипофосфатемии являются гиперпаратиреоидизм, врожденный дефект реабсорбции фосфора в почках, недостаточность питания, онкологические заболевания.

Суточная потребность составляет около 1 г.

МИКРОЭЛЕМЕНТЫ

Железо

Содержание железа в организме — 3–5 г, наибольшее его количество (2/3) приходится на гемоглобин, 4,5 % — на миоглобин, 2 % находится в составе ферментов. Оно может быть геминовым (железо гема и других порфиринов) либо негеминовым (в составе фермента аконитазы и железосерных белков, входящих в комплексы дыхательной цепи). Fe принимает участие в связывании, транспорте и депонировании О2 (гемоглобин и миоглобин), в транспорте электронов в дыхательной цепи (цитохромы), в окислительно-вос-становительных реакциях (некоторые оксидоредуктазы), реакциях гидроксилирования (цитохром Р450) и обезвреживания перекисей (каталаза и пероксидазы).

Железо всасывается в верхней части тонкого кишечника. При возрастании потребности в нём (кровопотери) Fe всасывается эффективнее. Улучшает всасывание железа витамин С. Фосфаты и фитаты зерновых растений затрудняют его всасывание. Из просвета кишечника свободное железо захватывается муцином слизистой. Интегрин на поверхности мембраны щёточной каёмки энтероцита облегчает транспорт Fe внутрь клетки, где железо связывается с белком мобилферрином. Этот белок «собирает» железо изо всех отсеков цитозоля энтероцита и переносит Fe в кровь, где Fe3+ сразу же связывается с белком апотрансферрином — образуется трансферрин (гликопротеин). Трансферрин, помимо транспортной функции, защищает также ткани от токсического действия свободных ионов железа. Затем, связываясь со специфическим мембранным рецептором, трансферрин поступает вместе с ним в клетки кроветворных органов. После освобождения от Fe трансферриновый рецептор возвращается в плазматическую мембрану.

В клетках печени, костного мозга и селезёнки железо связывается с апоферритином. Этот белок состоит из 24 субъединиц, формирующих 6 каналов, через которые в центральную часть молекулы поступают ионы железа. 1 молекула апоферритина может заключать в себе до 4,5 тысяч атомов железа. Апоферритин, связанный с Fe, называется ферритином. Железо может быть снова использовано только после распада ферритина. При загрузке депо (феррритина) Fe откладывается в виде нерастворимого комплекса — гемосидерина.

Физиологические потери железа при обновлении эпителия кишечника незначительны. Особенностью обмена Fe является неспособность организма экскретировать его большие количества. В норме между скоростью всасывания и выведения железа существует равновесие. Существенный дефицит железа может возникать при кровопотере (с 1 мл крови теряется 0,5 мг Fe). Недостаток Fe возникает также при потреблении бедной железом пищи и нарушениях его всасывания. В результате развивается железодефицитная гипохромная анемия. Избыточное отложение Fe в виде гемосидерина в клетках печени и селезёнки отмечается при переливании больших объёмов крови или гемолизе эритроцитов.

Суточная потребность в железе для взрослых — 1–2 мг. Однако всасывается лишь 10 % содержащегося в рационе питания Fe.

Медь

Всасываясь из слизистой кишечника, медь в портальном кровотоке адсорбируется альбуминами и белком транскупреином и поступает в печень — центральный орган обмена меди. В печени медь либо запасается, либо включается в Cu-содержащие ферменты. В плазме крови Cu связывается с ферментом церулоплазмином2-глобулин), имеющим голубую окраску. Церулоплазмин обладает оксидазной активностью (окисляет аскорбиновую кислоту, адреналин, ДОФА и др.). Он играет ведущую роль во взаимосвязи обмена Cu и Fe.

Роль меди в обмене веществ. Медь входит в состав многих ферментов: цитохромоксидазы (фермент дыхательной цепи), моноаминоксидазы (обезвреживание биогенных аминов), церулоплазмина, каталазы (обезвреживание Н2О2), тирозиназы (синтез меланина), супероксиддисмутазы (обезвреживание О2), лизилоксидазы (синтез коллагена и эластина).

Суточная потребность — 2–3 мг. При недостатке меди в рационе может развиваться железодефицитная анемия, так как медь непосредственно участвует в метаболизме железа.

Селен

Селен является дефицитным и абсолютно незаменимым микроэлементом. Он является мощным антиоксидантом, защищая ткани от свободнорадикальной деструкции как самостоятельно (например, защищая SH-группы от окисления), так и в составе глутатиопероксидазы (Se входит в состав её активного центра) — важнейшего фермента антиоксидантной системы организма. Селен — составная часть тироксин-5-дейодазы, обеспечивающей синтез гормона щитовидной железы — трийодтиронина. Селен — классический антиканцероген, что объясняется его антиоксидантными свойствами.

Суточная потребность — 100 мкг.

БИОХИМИЯ ПИТАНИЯ. ВИТАМИНЫ И ДРУГИЕ НЕЗАМЕНИМЫЕ ФАКТОРЫ ПИТАНИЯ. СИНДРОМ НЕДОСТАТОЧНОГО ПИТАНИЯ

Питательное вещество — компонент пищи, который обеспечивает организм структурно-функциональными компонентами или энергией.

Условно различают три важнейших категории питательных веществ:

  • энергодающие (белки, углеводы и липиды);
  • микрокомпоненты (витамины и минеральные соединения, необходимые для биохимических процессов);
  • волокнистые соединения (неперевариваемые полисахариды).

Незаменимый фактор питания — вещество, поступающее в организм с пищей, поскольку в самом организме оно не может образовываться в достаточном количестве.

Известные на сегодняшний день незаменимые факторы питания для человека:

  • вода;
  • энергия или калории из углеводов, жиров или белка;
  • 8–10 незаменимых аминокислот;
  • незаменимые жирные кислоты;
  • 14 витаминов;
  • 16–20 минеральных компонентов-микроэлементов.

Энергетические потребности организма взрослого человека в состоянии покоя составляют 1300–1800 ккал. Они увеличиваются при ожогах, травмах, инфекционных заболеваниях, в послеоперационный период. При голодании они снижаются. Основными источниками энергии являются углеводы — 42 %, жиры — 40 %, белки — 15 % и алкоголь — 3 %. Желательно, чтобы 55 % АТФ образовывалось в результате расщепления углеводов, 30 % — липидов, 15 % — белков.

Энергия, выделяющаяся в ходе расщепления в организме продуктов питания — источников энергии, запасается в виде АТФ. В состоянии покоя 22 % образовавшегося АТФ расходуется на работу Na+, K+ АТФ-азы, 21 % — на биосинтез белка, 10 % — на перенос ионов кальция через биологические мембраны и 11 % — на мышечное сокращение.

Витамины

Витамин Функции Гиповитаминоз
А Ретинол

β-каротин

Зрительные пигменты в сетчатке; регуляция экспрессии генов и клеточной дифференцировки «Куриная слепота», ксерофталмия; кератинизация кожи, ксеростомия, гипоплазия эмали
Д Кальциферол Поддержание баланса Са2+; стимуляция всасывания Са2+ в кишечнике и реабсорбции в почках; регуляция экспрессии генов и клеточной дифференцировки Рахит = плохая минерализация костной ткани; остеомаляция = деминерализация кости, гипоплазия эмали и патологическая стираемость зубов
Е Токоферолы

токотриенолы

Антиоксидант, особенно в клеточных мембранах; роль в передаче клеточного сигнала Чрезвычайно редко — выраженные неврологические расстройства
К Филлохинон

менахиноны

Кофермент в образовании -карбоксиглутамата в составе ферментов свертывания крови и матрикса кости Нарушение свертывания крови, геморрагический синдром, нарушение минерализации тканей зуба и кости
В1 Тиамин Кофермент пируват и -кетоглутарат дегидрогеназ, транскетолазы; участвует в проведении нервного импульса, регулируя Сl-каналы Поражение периферической нервной системы (бери-бери) или ц. н. с. (синдром Вернике-Корсакова)
В2 Рибофлавин Кофермент в окислительно-восстановительных реакциях; простетическая группа флавопротеинов Повреждение уголков рта, губ и языка, себорейный дерматит
РР Ниацин, никотиновая кислота, никотинамид Кофермент в окислительно-восстановительных реакциях, составной компонент НАД+ и НАДФ+; роль в регуляции внутриклеточного Са2+ и проведении сигнала в клетку Пеллагра — синдром 3-х «Д»
В6 Пиридоксин

пиридоксаль

пиридоксамин

Кофермент в реакциях трансаминирования и декарбоксилирования аминокислот, гликоген фосфорилазы; модуляция действия стероидных гормонов Нарушение метаболизма аминокислот, судороги
Фолиевая кислота Кофермент в транспорте одноуглеродных фрагментов Мегалобластическая анемия
В12 Кобаламин Кофермент в транспорте одноуглеродных фрагментов и метаболизме фолиевой кислоты Пернициозная анемия = мегалобластическая анемия и дегенерация спинного мозга
Пантотеновая кислота Функциональная часть КоА и ацилпереносящего белка в составе ацилсинтетазы Поражение периферической нервной системы («синдром жжения стоп»)
Н Биотин Кофермент в реакциях карбоксилирования (глюконеогенез, синтез жирных кислот); роль в регуляции клеточного цикла Нарушение липидного и углеводного обменов, дерматит
С Аскорбиновая кислота Кофермент в гидроксилировании пролина и лизина (синтез коллагена); антиоксидант; усиливает всасывание железа Цинга (плохое заживление, потеря цемента зубов, подкожные кровоизлияния)

Синдром недостаточного питания — патологическое состояние, обусловленное несоответствием поступления и расхода питательных веществ, приводящее к снижению массы тела и изменению компонентного состава организма.

Причины: социальные, экономические, биологические, экологические.

Биологические причины — внешние факторы (плохое питание, травмы, инфекции) и внутренние (нарушение переваривания, всасывания и усвоения пищевых веществ в организме). Существуют 2 основных клинических формы недостаточности питания: квашиоркор и маразм (кахексия)

Клинические формы Квашиоркор

(ранний период после тяжелых травм, ожогов, обширных хирургических вмешательств)

Маразм

(например, при онкологических заболеваниях)

Первопричина Дефицит белка из-за отсутствия его в пище или нарушения всасывания Общая нехватка источников энергии
Отек Имеет место вследствие снижения онкотического давления в кровеносных сосудах (гипоальбуминемия) Отсутствует
Гипоальбуминемия «Низкий альбумин» в плазме крови — основной симптом. В печени сокращается продукция альбумина, чтобы сохранить потерю белка Отсутствует
Ожирение печени Имеет место низкое содержание белка в пище, как правило, сочетается с высоким потреблением углеводов Отсутствует
Уровень инсулина
в крови
Поддерживается на нормальном уровне Низкий — в организме преобладают катаболические процессы, направленные на извлечение энергии из любых оставшихся депо
Уровень адреналина
в крови
Нормальный Высокий
Потеря мышечной массы Отсутствует или слабая Да — может быть выраженной вследствие катаболизма белков
Жировые запасы Некоторая потеря Их нет
Характер течения
в зависимости от времени
Острое — выраженный катаболический ответ в короткий период времени Постепенно — нерезкий катаболический ответ на голодание (может занимать длительный период времени)
Сниженная
пигментация
Может иметь место — для пигментации нужны аминокислоты (тирозин). Бледный вид

 

А Вам помог наш сайт? Мы будем рады если Вы оставите несколько хороших слов о нас.
Категории
Рекомендации
Можно выбрать
Интересное
А знаете ли вы, что нажав сочетание клавиш Ctrl+F - можно воспользоваться поиском по сайту?
X
Copyrights © 2015: FARMF.RU - тесты, лекции, обзоры
Яндекс.Метрика
Рейтинг@Mail.ru