Антибиотики. Антибактериальные средства био проис­хождения

АНТИБИОТИКИ

Глава 37. Антибактериальные химиотерапевтические средства

Антибиотики — это химиотерапевтические вещества биологического проис­хождения, избирательно угнетающие жизнедеятельность микроорганизмов.

При классификации антибиотиков используют различные принципы.

В зависимости от источников получения, антибиотики разделяются на две группы: природные (биосинтетические), продуцируемые микроорганизмами и низшими грибами, и полусинтетические, получаемые в результате модификации структуры природных антибиотиков.

Интересуетесь фармакологией? Вы фармацевт, провизор или врач? Рекомендуем вам прочитать фармакологические научные журналы. Большая библиотека интересных журналов различных тематик.

По химическому строению выделяют следующие группы антибиотиков:

  1. Бета-лактамные антибиотики (пенициллины, цефалоспорины, карбапенемы, монобактамы).
  2. Макролиды и близкие к ним антибиотики.
  3. Аминогликозиды.
  4. Тетрациклины.
  5. Полимиксины.
  6. Полиены (противогрибковые антибиотики).
  7. Препараты хлорамфеникола (левомицетина).
  8. Гликопептидные антибиотики.
  9. Антибиотики разных химических групп.

Характер (тип) действия антибиотиков может быть бактерицидным (фунги-или протозоацидным, в зависимости от возбудителя), под которым понимается полное разрушение клетки инфекционного агента, и бактериостатическим (фунги-, протозоастатическим), которое проявляется прекращением роста и деления его клеток.

Бактерицидный или бактериостатический характер влияния антибиотиков на микрофлору во многом определяется особенностями механизма их действия. Ус­тановлено, что противомикробное действие антибиотиков развивается, в основ­ном, как следствие нарушения:

  1. синтеза клеточной стенки микроорганизмов;
  2. проницаемости цитоплазматической мембраны микробной клетки;
  3. внутриклеточного синтеза белка в микробной клетке;
  4. синтеза РНК в микроорганизмах.

При сопоставлении характера и механизма действия антибиотиков (табл. 37.1), видно, что бактерицидный эффект оказывают преимущественно те антибио­тики, которые нарушают синтез клеточной стенки, изменяют проницаемость цитоплазматической мембраны или нарушают синтез РНК в микроорганизмах. Бактериостатическое действие характерно для антибиотиков, нарушающих внут­риклеточный синтез белка.

По спектру антимикробного действия антибиотики можно условно разделить на препараты широкого спектра действия (действующие на грамположительную и грамотрицательную микрофлору: тетрациклины, левомицетин, аминогликози­ды, цефалоспорины, полусинтетические пенициллины) и препараты сравнительно

Таблица 37.1. Механизм и характер антимикробного действия антибиотиков

Механизм действия Антибиотики Преимущественный характер антимикробного действия
Нарушение синтеза клеточной стенки β-лактамиды

Гликопептидные антибиотики

Циклосерин Бацитрацин

Бактерицидный

Бактерицидный

Бактерицидный

Нарушение проницаемости

цитоплазматической

мембраны

Полимиксины

Полиеновые антибиотики

Бактерицидный

Бактерицидный

Нарушение внутриклеточ­ного синтеза белка Макролиды

Тетрациклины

Линкозамиды

Левомицетин

Аминогликозиды

Бактериостатический

Бактериостатический

Бактериостатический

Бактериостатический

Бактерицидный

Нарушение синтеза РНК Рифампицин Бактерицидный

узкого спектра действия. Вторую группу в свою очередь можно разделить на ан­тибиотики, действующие преимущественно на грамположительную микрофлору (биосинтетические пенициллины, макролиды) и антибиотики, действующие пре­имущественно на грамотрицательную микрофлору (полимиксины). Кроме того, различают противогрибковые и противоопухолевые антибиотики.

По клиническому применению выделяют основные антибиотики, с кото­рых начинают лечение до определения чувствительности к ним микроорганиз­мов, вызвавших заболевание, и резервные, которые применяют при устойчи­вости микроорганизмов к основным антибиотикам или при непереносимости последних.

В процессе применения антибиотиков к ним может развиться устойчивость (резистентность) микроорганизмов, т.е. способность микроорганизмов размно­жаться в присутствии терапевтической дозы антибиотика. Резистентность мик­роорганизмов к антибиотикам может быть природной и приобретенной.

Природная устойчивость связана с отсутствием у микроорганизмов «мишени» для действия антибиотика или недоступности «мишени» вследствие низкой про­ницаемости клеточной стенки, а также ферментативной инактивации антибио­тика. При наличии у бактерий природной устойчивости антибиотики клиничес­ки неэффективны.

Под приобретенной устойчивостью понимают свойство отдельных штаммов бактерий сохранять жизнеспособность при тех концентрациях антибиотиков, которые подавляют основную часть микробной популяции. Приобретенная ус­тойчивость является либо результатом спонтанных мутаций в генотипе бактери­альной клетки, либо связана с передачей плазмид от естественно-устойчивых бак­терий к чувствительным видам.

Известны следующие биохимические механизмы устойчивости бактерий к антибиотикам:

  1. ферментативная инактивация препаратов;
  2. модификация «мишени» действия антибиотиков;
  3. активное выведение антибактериальных препаратов из микробной клетки;
  4. снижение проницаемости клеточной стенки бактерий;
  5. формирование метаболического «шунта».

Устойчивость микроорганизмов к антибиотикам может иметь групповую спе­цифичность, т.е. не только к применяемому препарату, но и к другим препаратам из той же химической группы. Такая устойчивость называется «перекрестной».

Соблюдение принципов применения химиотерапевтических средств позволя­ет уменьшить вероятность возникновения устойчивости.

Несмотря на то, что антибиотики характеризуются высокой избирательнос­тью действия, тем не менее они оказывают целый ряд побочных эффектов аллер­гической и неаллергической природы.

БЕТА-ЛАКТАМНЫЕ АНТИБИОТИКИ

Бета-лактамные антибиотики – это лекарственные средства, име­ющие в составе молекулы б-лактамный цикл: пенициллины, цефалоспорины, карбапенемы и монобактамы.

β-лактамный цикл необходим для проявления противомикробной актив­ности этих соединений. При расщеплении β-лактамного цикла бактериаль­ными ферментами (б-лактамазами) антибиотики утрачивают антибактериаль­ное действие.

Все бета-лактамные антибиотики обладают бактерицидным эффектом, в основе которого лежит угнетение ими синтеза клеточной стенки бактерий. Анти­биотики этой группы нарушают синтез пептидогликана-биополимера, являюще­гося основным компонентом клеточной стенки бактерий. Пептидогликан состо­ит из полисахаридов и полипептидов.

В состав полисахаридов входят аминосахара-ацетилглюкозамин и N-ацетилмурамовая кислота. С аминосахарами связаны короткие пептидные цепи. Окончательную жесткость клеточной стенке придают поперечные пептидные цепочки, состоящие из 5 остатков глицина (пентаглициновые мостики). Синтез пептидогликана протекает в 3 стадии:

  • 1) в цитоплазме синтезируются предше­ственники пептидогликана (ацетилмурамилпентапептид и ацетилглюкозамин), которые переносятся через цитоплазматическую мембрану с участием липидного транспортера, ингибируемого бацитрацином;
  • 2) включение этих предшествен­ников в растущую полимерную цепь;
  • 3) образование поперечных связей между двумя соседними цепями в результате реакции транспептидирования, катализи­руемой ферментом-транспептидазой пептидогликана.

Процесс расщепления пептидогликана катализирует фермент-муреингидролаза, активность которого в нормальных условиях сдерживается эндогенным ин­гибитором.

Бета-лактамные антибиотики ингибируют:

  • а) транспептидазу пептидогликана, что приводит к нарушению образования пептидогликана;
  • б) эндогенный ингибитор, что приводит к активации муреингидролазы, рас­щепляющей пептидогликан.

Бета-лактамные антибиотики малотоксичны для макроорганизма, так как мембраны клеток человека не содержат пептидогликана. Антибиотики этой группы эффективны преимущественно в отношении делящихся, а не «покоящихся» клеток, поскольку в клетках, находящихся в стадии активного роста, синтез пептидогликана происходит наиболее интенсивно.

ПЕНИЦИЛЛИНЫ

В основе строения пенициллинов лежит 6-аминопенициллановая кислота (6-АПК), которая представляет собой гетероциклическую систему, состоящую из 2 конденсированных колец: четырехчленного-(β-лактамного (А) и пятичленного-тиазолидинового (В).

Пенициллины отличаются друг от друга строением ацильного остатка у ами­ногруппы 6-АПК.

Все пенициллины по способу получения можно разделить на природные (био­синтетические) и полусинтетические.

Природные пенициллины

-Природные пенициллины продуцируются различными видами плесневого гриба Penicillium.

Спектр действия природных пенициллинов включает преимущественно грам-положительные микроорганизмы: грамположительные кокки (стрептококки, пневмококки; стафилококки, не продуцирующие пенициллиназу), грамотрицательные кокки (менингококки и гонококки), грамположительные палочки (воз­будители дифтерии, сибирской язвы; листерии), спирохеты (бледная трепонема, лептоспиры, боррелии), анаэробы (клостридии), актиномицеты.

Природные пенициллины применяют при тонзиллофарингите (ангине), скар­латине, роже, бактериальном эндокардите, пневмонии, дифтерии, менингите, гнойных инфекциях, газовой гангрене и актиномикозе. Препараты этой группы являются средствами выбора при лечении сифилиса и для профилактики обо­стрений ревматических заболеваний.

Все природные пенициллины разрушаются β-лактамазами, поэтому их нельзя использовать для лечения стафилококковых инфекций, так как в большинстве случаев стафилококки вырабатывают такие ферменты.

Препараты природных пенициллинов классифицируют на:

1. Препараты для парентерального введения (кислотонеустойчивые)

  • Короткого действия Бензилпенициллина натриевая и калиевая соли.
  • Длительного действия

Бензилпенициллин прокаин (Бензилпенициллина новокаиновая соль), Бензатин бензилпенициллин (Бициллин-1), Бициллин-5.

2. Препараты для энтерального введения (кислотоустойчивые)
Феноксиметил пенициллин.

Бензилпенициллина натриевая и калиевая соли являются хорошо растворимыми препаратами бензилпенициллина. Быстро всасываются в системный кровоток и создают высокие концентрации в плазме крови, что по­зволяет их применять при острых, тяжелопротекающих инфекционных процессах. При внутримышечном введении препараты накапливаются в крови в макси­мальных количествах через 30—60 мин и практически полностью выводятся из организма через 3-4 ч, поэтому внутримышечные инъекции препаратов необхо­димо производить через каждые 3—4 ч. При тяжелых септических состояниях растворы препаратов вводят внутривенно. Бензилпенициллина натриевую соль вводят также под оболочки мозга (эндолюмбально) при менингитах и в полости тела – плевральную, брюшную, суставную (при плевритах, перитонитах и артри­тах). Подкожно применяют препараты для обкалывания инфильтратов. Бензил­пенициллина калиевую соль нельзя вводить эндолюмбально и внутривенно, так как освобождающиеся из препарата ионы калия могут вызывать судороги и угне­тение сердечной деятельности.

Необходимость частых инъекций натриевой и калиевой солей бензилпеницил­лина послужила поводом для создания длительно действующих препаратов бен­зилпенициллина (депо-пенициллинов). Вследствие плохой растворимости в воде эти препараты образуют с водой суспензии и вводятся только внутримышечно. Депо-пенициллины медленно всасываются с места введения и не создают высо­ких концентраций в плазме крови, поэтому они применяются при хронических инфекциях легкой и средней тяжести.

К пролонгированным пенициллинам относятся бензилпенициллин про каин , или новокаиновая соль бензилпенициллина, которая действует 12— 18 ч, бензатин бензилпенициллин (бициллин-1), действующий 7-10 дней, и бициллин-5, оказывающий противомикробное действие в течение 1 mqq.

Феноксиметилпенициллин по химическому строению отличается от бензилпенициллина наличием в молекуле феноксиметильной группы вместо бензильной, что придает ему устойчивость в кислой среде желудка и делает его при­годным для применения внутрь.

Природные пенициллины имеют ряд недостатков, главными из которых явля­ются следующие: разрушение пенициллиназой, неустойчивость в кислой среде желудка (кроме феноксиметилпенициллина) и относительно узкий спектр действия.

Полусинтетические пенициллины

В процессе поиска более совершенных антибиотиков группы пенициллина на основе 6-АПК были получены полусинтетические препараты. Химические модификации 6-АПК проводились за счет присоединения различных радикалов к аминогруппе. Основные отличия полусинтетических пенициллинов от при­родных касаются кислотоустойчивости, устойчивости к пенициллиназе и спект­ра действия.

1. Препараты узкого спектра действия, устойчивые к действию пенициллиназы

Изоксазолиловые пенициллины
Оксациллин, Диклоксациллин.

2. Препараты широкого спектра действия, не устойчивые к действию пени­
циллиназы

Аминопенициллины
Ампициллин, Амоксициллин.

Карбоксипенициллины

Карбенициллин, Карфециллин, Тикарциллин.

Уреидопенициллины

Азлоциллин, Пиперациллин, Мезлоциллин. Полусинтетические пенициллины, устойчивые к действию пенициллиназы, отличаются от препаратов бензилпенициллина тем, что они эффективны при инфекциях, вызываемых пенициллиназообразующими стафилококками, поэто­му препараты этой группы получили название «антистафилококковые» пеницил­лины. В остальном спектр действия соответствует спектру природных пенициллинов, но активность значительно ниже.

Оксациллин устойчив в кислой среде желудка, но всасывается из желу­дочно-кишечного тракта всего на 20—30%. Значительная часть связывается с бел­ками крови. Через ГЭБ не проникает.

Препарат применяется внутрь, внутримышечно и внутривенно.

Диклоксациллин отличается от оксациллина высокой степенью абсорбции из желудочно-кишечного тракта (40—45%).

Аминопенициллины отличаются от препаратов бензилпенициллина более широким спектром действия, а также кислотоустойчивостью.

Спектр действия аминопенициллинов включает как грамположительные мик­роорганизмы, так и грамотрицательные (сальмонеллы, шигеллы, кишечную палоч­ку, некоторые штаммы протея, гемофильную палочку). Препараты этой группы не действуют на синегнойную палочку и пенициллиназообразующие стафилококки.

Аминопенициллины применяют при острых бактериальных инфекциях верх­них дыхательных путей, бактериальном менингите, кишечных инфекциях, ин­фекциях желче- и мочевыводящих путей, а также для эрадикации Helicobacter pylori при язвенной болезни желудка.

Ампициллин из желудочно-кишечного тракта всасывается неполно (30-40%). В плазме крови незначительно (до 15—20%) связывается с белками. Плохо проникает через ГЭБ. Из организма выводится с мочой и желчью, где создаются высокие концентрации препарата. Препарат вводят внутрь и внутривенно.

Амоксициллин является производным ампициллина со значительно улуч­шенной фармакокинетикой при приеме внутрь. Хорошо всасывается из желудоч­но-кишечного тракта (биодоступность 90-95%) и создает более высокие концен­трации в плазме крови. Применяется только внутрь.

В медицинской практике используют комбинированные препараты, содержа­щие разные соли ампициллина и оксациллина. К числу таких препаратов отно­сятся ампиокс (смесь ампициллина тригидрата и натриевой соли оксациллина в соотношении 1:1) и ампиокс-натрий (смесь натриевых солей ампициллина и оксациллина в соотношении 2:1). Эти препараты сочетают широкий спектр дей­ствия и устойчивость к пенициллиназе. В связи с этим ампиокс и ампиокс-натрий применяют при тяжело протекающих инфекционных процессах (сепсис, эндокардит, послеродовая инфекция и др.); при неустановленной антибиотикограмме и невыделенном возбудителе; при смешанной инфекции, вызванной грамположительными и грамотрицательными микроорганизмами. Ампиокс применя­ется внутрь, а ампиокс-натрий вводится внутримышечно и внутривенно.

Главным достоинством карбокси- и уреидопенициллинов является актив­ность в отношении синегнойной палочки (Pseudomonas aeruginosa), в связи с чем эти пенициллины называются «антисинегнойными». Основным показа­нием для препаратов этой группы являются инфекции, вызванные синегной­ной палочкой, протеем, кишечной палочкой (сепсис, раневые инфекции, пнев­монии и др.).

Карбенициллин разрушается в желудочно-кишечном тракте, поэтому вводится внутримышечно и внутривенно. Через ГЭБ не проникает. Около 50% препарата связываются с белками плазмы крови. Выводится преимущественно почками.

Карфециллин, в отличие от карбенициллина, кислотоустойчив и приме­няется внутрь. Тикарциллин активнее карбенициллина, особенно по влия­нию на синегнойную палочку.

Уреидопенициллины в 4—8 раз превосходят карбоксипенициллины по актив­ности в отношении синегнойной палочки. Вводятся парентерально.

Все полусинтетические пенициллины широкого спектра действия разрушаются бактериальными б-лактамазами (пенициллиназами), что значительно снижает их клиническую эффективность. Исходя из этого, были получены соединения, инактивирующие б-лактамазы бактерий. К ним относятся клавулановая кислота, сульбактам и тазобактам. Они входят в состав комбинированных препаратов, содер­жащих полусинтетический пенициллин и один из ингибиторов б-лактамаз. Такие препараты получили название «ингибиторзащищенных пенициллинов». В отли­чие от монопрепаратов, ингибиторзащищенные пенициллины действуют на пенициллиназообразующие штаммы стафилококков, обладают высокой активнос­тью в отношении грамотрицательных бактерий, продуцирующих б-лактамазы, а также эффективны в отношении бактероидов.

Фармацевтической промышленностью выпускаются следующие комбиниро­ванные препараты: амоксициллин/клавулановая кислота (Амоксиклав, Аугментин), ампициллин/сульбактам (Уназин), пиперациллин/тазобактам (Тазоцин).

Препараты группы пенициллина малотоксичны и обладают большой широ­той терапевтического действия. Однако они относительно часто вызывают ал­лергические реакции, которые могут проявляться в виде крапивницы, кожной сыпи, отека Квинке, бронхоспазма и анафилактического шока. Аллергические реакции могут возникать при любом пути введения препарата, но наиболее часто наблюдаются при парентеральном введении. Лечение аллергических реакций зак­лючается в отмене препаратов пенициллина, а также во введении антигистаминных средств и глюкокортикостероидов. При анафилактическом шоке внутривен­но вводят адреналин и глкжокортикостероиды.

Кроме того, пенициллины вызывают некоторые побочные эффекты неаллер­гической природы. К ним относится раздражающее действие. При приеме внутрь они могут вызывать тошноту, воспаление слизистой оболочки языка и ротовой полости. При внутримышечном введении могут быть болезненность и развитие инфильтратов, а при внутривенном — флебиты и тромбофлебиты.

ЦЕФАЛОСПОРИНЫ

К цефалоспоринам относится группа природных и полусинтетических анти­биотиков, имеющих в своей основе 7-аминоцефалоспорановую кислоту (7-АЦК).

По химическому строению основа этих антибиотиков (7-АЦК) имеет сходство с 6-АПК. Однако имеются и существенные различия: структура пенициллинов включает тиазолидиновое кольцо, а цефалоспоринов — дигидротиазиновое.

Имеющиеся черты структурного сходства цефалоспоринов с пенициллинами предопределяют одинаковый механизм и тип антибактериального действия, вы­сокую активность и эффективность, низкую токсичность для макроорганизма, а также перекрестные аллергические реакции с пенициллинами. Важными отли­чительными особенностями цефалоспоринов являются их устойчивость к пенициллиназе и широкий спектр антимикробного действия.

Цефалоспорины принято классифицировать по поколениям, внутри которых выделяют препараты для парентерального и энтерального введения (табл. 37.2).

Таблица 37.2. Классификация цефалоспоринов

Путь введения Поколения цефалоспоринов
I II III IV
Парентеральный

(внутривенно,

внутримышечно)

Цефазолин Цефуроксим Цефотаксим

Цефтриаксон Цефтазидим

Цефоперазон

Цефепим Цефпиром
Пероральный Цефалексин Цефадроксил Цефуроксим аксетил Цефаклор Цефиксим

Цефалоспорины I поколения

Цефалоспорины I поколения обладают широким спектром действия с преиму­щественным влиянием на грамположительную флору и сопоставимы по спектру и силе действия с аминопенициллинами. Основной особенностью препаратов этого поколения является их высокая антистафилококковая активность, в том числе против б-лактамазообразующих штаммов. Цефалоспорины I поколения действуют на некоторые грамотрицательные бактерии (кишечную палочку и клебсиелл), но разрушаются б-лактамазами грамотрицательных микроорганизмов. К препаратам I поколения первично резистентны синегнойная палочка, протей, энтерококки и бактероиды.

Цефалоспорины I поколения применяются при тонзиллофарингите, инфек­циях кожи и мягких тканей, а также для профилактики послеоперационных ос­ложнений.

Цефазолин (Кефзол) при парентеральном введении хорошо проникает в различные органы и ткани, но плохо – через ГЭБ. Создает высокие концентра­ции в плазме крови. Выделяется почками в неизмененном виде.

Цефалексин (Кефлекс) по спектру активности близок к цефазолину, но хуже действует на грамотрицательные бактерии. Хорошо всасывается из желу­дочно-кишечного тракта, но высоких концентраций в крови и большинстве ор­ганов и тканей не создает. Терапевтическая концентрация в крови после одно­кратного введения сохраняется в течение 4—6 ч.

Цефалоспорины II поколения

Цефалоспорины II поколения отличаются от препаратов I поколения более высокой активностью в отношении грамотрицательных микроорганизмов (ки­шечной палочки, протея, сальмонелл, шигелл). Препараты этого поколения бо­лее устойчивы к действию б-лактамаз грамотрицательных бактерий. Как и цефа­лоспорины I поколения, не действуют на синегнойную палочку.

Цефалоспорины II поколения применяются при бактериальных инфекциях верхних и нижних дыхательных путей, инфекциях мочевыводящих путей, инфек­циях кожи, мягких тканей, костей и суставов, а также для периоперационной антибиотикопрофилактики в хирургии.

Цефуроксим (Кетоцеф) при парентеральном введении хорошо проникает во многие органы и ткани, в том числе через ГЭБ (при воспалении). Выводится преимущественно почками.

Цефуроксим-аксетил (Зиннат) — производное цефуроксима для при­ема внутрь, представляет собой пролекарство.

Цефаклор — хорошо всасывается из желудочно-кишечного тракта, прони­кает во многие органы и ткани, через ГЭБ не проходит. Выводится с мочой. с

Цефалоспорины III поколения

Цефалоспорины III поколения отличаются высокой активностью в отноше­нии большинства грамотрицательных бактерий, в том числе резистентных к дру­гим антибиотикам. Некоторые из цефалоспоринов III поколения (цефтазиди^м, цефоперазон) действуют на синегнойную палочку. Вместе с тем по действию на стафилококки, стрептококки и другие грамположительные бактерии цефалоспо­рины III поколения уступают препаратам I—II поколений. Все цефалоспорины этого поколения устойчивы к действию б-лактамаз грамотрицательных микро­организмов.

Показания к назначению цефалоспоринов III поколения включают ин­фекции разной локализации: верхних и нижних дыхательных путей, мочевы­водящих путей, кожи, мягких тканей, кишечные инфекции, сепсис, гонорея, менингит.

Цефотаксим (Клафоран) — основной представитель цефалоспоринов III поколения для парентерального введения. Препарат хорошо проникает в различ­ные ткани и проходит через ГЭБ. Метаболизируется в печени. Выделяется через почки. Т около 1 ч.

Цефтриаксон (Лонгацеф) по спектру активности сходен с цефотаксимом, но имеет более длительный t (5—7 ч). Является средством выбора при гонорее.

Цефтазидим (Фортум) ицефоперазон (Цефобид) отличается высокой активностью в отношении синегнойной палочки, поэтому применяются преиму­щественно при инфекциях, вызванных этим возбудителем.

Цефалоспорины IV поколения

У цефалоспоринов IV поколения еще более широкий спектр антимикробного действия, чем у препаратов III поколения. Они более эффективны в отношении грамположительных кокков. Для них характерна более высокая устойчивость к действию б-лактамаз.

Применяются цефалоспорины IV поколения при тяжелых инфекциях, вызван­ных полирезистентной микрофлорой, а также для лечения инфекций у пациен­тов с иммунодефицитом.

Цефепим (Максипим) и цефпером (Кейтен) при парентеральном вве­дении хорошо проникают во многие органы и ткани, проникают через ГЭБ. Вы­водятся преимущественно в неизмененном виде через почки.

При применении цефалоспоринов возможно развитие аллергических реакций (крапивница, лихорадка, сывороточная болезнь, анафилактический шок). Боль­ным, имеющим в анамнезе аллергические реакции на пенициллины, не должны назначаться цефалоспорины. Из неаллергических осложнений возможно нару­шение функции почек, что наиболее характерно для цефалоспоринов I поколе­ния. В редких случаях цефалоспорины вызывают лейкопению. Для ряда цефа­лоспоринов, имеющих в структуре 4-метилтиотетразольное кольцо (цефоперазон и др.), характерно тетурамоподобное действие. При приеме пероральных цефа­лоспоринов могут возникать диспептические явления. При внутримышечном введении цефалоспоринов могут возникать инфильтраты, а при внутривенном — флебиты. При приеме цефалоспоринов следует учитывать возможность развития суперинфекции.

КАРБАПЕНЕМЫ

Имипенем, Тиенам, Меропенем

Карбапенемы относятся к группе β-лактамных антибиотиков. Они характери­зуются более высокой устойчивостью к действию β-лактамаз и обладают широ­ким спектром антибактериального действия, включая штаммы, устойчивые к цефалоспоринам III и IV поколений.

Карбапенемы являются резервными антибиотиками и применяются при тя­желых инфекциях, вызванных полирезистентными штаммами микроорганизмов.

К группе карбапенемов относятся имипенем и меропенем.

Ймипенем является производным тиенамицина, продуцируемого Streptomyces cattleya. Для медицинского применения выпускается комбинирован­ный препарат, содержащий ймипенем в сочетании со специфическим ингибито­ром дегидропептидазы-I почечных канальцев — циластатином. Такое сочетание тормозит метаболизм имипенема в почках и значительно повышает концентра­цию неизмененного антибиотика в почках и мочевыводящих путях. Этот комби­нированный препарат носит название «Тиенам».

Тиенам вводится внутривенно. Хорошо проникает во многие органы и ткани, проходит через ГЭБ при воспалении оболочек мозга. t(/i составляет 1 ч. При применении препарата возможны аллергические реакции, тошнота, рво­та, судороги.

Меропенем (Меронем) в отличие от имипенема не разрушается дегидропептидазой почечных канальцев, поэтому применяется без ее ингибиторов. По остяттъным хяпятгтепистикям близок к имипенему.

МОНОБАКТАМЫ

Азтреонам

Антибиотики этой группы имеют в своей структуре моноциклическое β-лактамное кольцо. Из монобактамов в медицинской практике применяется один антибиотик – азтреонам. Препарат проявляет высокую активность в отношении грамотрицательных бактерий (кишечной и синегнойной палочек, протея, клебсиелл и др.) и не действует на грамположительные бактерии, бактероиды и дру­гие анаэробы.

Своеобразие антимикробного спектра действия азтреонама обусловлено тем, что он устойчив ко многим б-лактамазам, продуцируемым грамотрицательной флорой, и в то же время разрушается β-лактамазами грамположительных микро­организмов и бактероидов.

Азтреонам является препаратом резерва и применяется при тяжелых инфек­циях мочевыводящих путей, брюшной полости и малого таза, менингите, сепси­се, при неэффективности других антибактериальных средств. Вводят препарат внутримышечно или внутривенно. Из побочных эффектов отмечаются диспептические нарушения, кожные аллергические реакции, головная боль.

МАКРОЛИДЫ И БЛИЗКИЕ К НИМ АНТИБИОТИКИ

Макролиды представляют собой класс антибиотиков, основу химической структуры которых составляет макроциклическое лактонное кольцо, связанное с различными сахарами.

Макролиды классифицируют в зависимости от способов получения и количе­ства атомов углерода в макроциклическом лактонном кольце (табл. 37.3).

Таблица 37.3. Классификация макролидов

Макролиды 14-членные 15-членные (азалиды) 16-членные
Природные Эритромицин Олеандомицин Спирамицин Джозамицин Мидекамицин
Полусинтетические Рокситромицин Кларитромицин Азитромицин Мидекамицина ацетат

Для антибиотиков-макролидов характерны следующие общие свойства: 1. Способность нарушать синтез микробных белков на уровне рибосом. Они связываются с 508-субъединицей бактериальных рибосом и нарушают процесс образования пептидных связей (ингибируют процесс транслокации). Резистент­ность микроорганизмов к макролидам связана с изменениями структуры рецепторов на 50S-субъединицах бактериальных рибосом, что нарушает связывание антибиотика с рибосомами.

  1. Преимущественно бактериостатический тип действия. В высоких концент­рациях оказывают бактерицидное действие на пневмококков, возбудителей кок­люша и дифтерии.
  2. Высокая активность в отношении грамположительных кокков (стрептокок­ков, стафилококков) и внутриклеточных возбудителей (хламидий и микоплазм).
  3. Способность проникать внутрь клеток и создавать высокие внутриклеточ­ные концентрации.
  4. Низкая токсичность для макроорганизма.
  5. Отсутствие перекрестных аллергических реакций с бета-лактамными анти­биотиками.

Спектр действия макролидов включает: грамположительные кокки (стреп­тококки, стафилококки), грамположительные палочки (возбудители дифтерии, листерии), грамотрицательные кокки (гонококки, менингококки), грамотрицательные палочки (легионеллы, хеликобактерии), хламидий, микоплазмы, спирохеты.

Таким образом, по спектру антимикробного действия макролиды напомина­ют препараты бензилпенициллина.

Макролиды применяются для лечения стрептококкового тонзиллофарингита, пневмонии (в том числе — «атипичной», вызванной микоплазмами, хламидиями и легионеллами), коклюша, дифтерии, скарлатины, инфекций кожи и мяг­ких тканей, хламидиоза, микоплазменной инфекции, инфекций полости рта, а также с целью круглогодичной профилактики ревматизма (при аллергии на пенициллины).

Эритромицин – природный макролид, продуцируемый Streptomyces erythreus. Препарат при назначении внутрь медленно всасывается из желудочно-кишечного тракта, частично разрушается в кислой среде желудка.

В присутствии пищи биодоступность резко снижается. Хорошо проникает в бронхиальный секрет, желчь. Плохо проходит через ГЭБ. Выводится преимуще­ственно через желудочно-кишечный тракт. Длительность действия 4-6 ч.

Олеандомицин продуцируется Streptomyces antibioticus. По спектру актив­ности близок к эритромицину, но менее активен.

Рокситромицин (Рулид) и кларитромицин (Клацид) – полусинте­тические 14-членные макролиды. Эффективны при применении внутрь. В отли­чие от эритромицина хорошо всасываются из желудочно-кишечного тракта, при этом пища не влияет на абсорбцию препаратов. Создают высокие концентрации в тканях. Действуют более продолжительно. X рокситромицина составляет 13 ч, кларитромицина — 3—4 ч.

Кроме вышеперечисленных показаний, кларитромицин применяется для эрадикации Helicobacter pylory при язвенной болезни желудка и двенадцатиперст­ной кишки, а также для профилактики и лечения атипичных микобактериозов при СПИДе.

Азитромицин (Сумамед) — полусинтетический 15-членный макролид, от­носится к подклассу азалидов, так как в макроциклическом кольце содержит атом азота. В отличие от эритромицина более активен в отношении грамотрицательных микроорганизмов. Создает самые высокие среди макролидов концентрации в тканях. Препарат имеет длительный t (35—55 ч), что дает возможность назна­чать препарат один раз в сутки.

Спирамицин, джозамицин и мидекамицин -природные 16-членные макролиды. Препараты эффективны в отношении некоторых штам­мов стрептококков и стафилококков, резистентных к эритромицину. Хорошо вса­сываются из желудочно-кишечного тракта, при этом пища практически не влия­ет на биодоступность. Мидекамицина ацетат — полусинтетический антибиотик с улучшенной фармакокинетикой.

Побочное действие препаратов данной группы проявляется, в основном, ал­лергическими реакциями и диспептическими расстройствами.

ЛИНКОСАМИДЫ

Линкомицин, Клиндамицин

В группу линкосамидов входят природный антибиотик линкомицин и его по­лусинтетический аналог — клиндамицин.

Для антибиотиков-линкосамидов характерны следующие общие свойства:

  1. способность ингибировать синтез белка в микробной клетке (действуют подобно макролидам);
  2. преимущественно бактериостатический тип действия. В высоких концент­рациях могут действовать бактерицидно на грамположительные кокки;
  3. узкий спектр действия (преимущественно грамположительные кокки, включая пенициллиназообразующие штаммы стафилококков). Высокоактивны в отношении бактероидов – облигатных неспорообразующих анаэробов;
  4. способность накапливаться в костной ткани и суставах;
  5. быстрое развитие устойчивости микрофлоры;
  6. отсутствие перекрестных аллергических реакций с бета-лактамными анти­биотиками.

Линкосамиды применяются как резервные антистафилококковые препараты при тонзиллофарингите, пневмонии, инфекциях кожи, мягких тканей, костей и суставов, а также при инфекциях, вызванных бактероидами.

Линкомицин всасывается из желудочно-кишечного тракта, при этом пища нарушает абсорбцию препарата. Метаболизируется в печени, выводится преиму­щественно с желчью.

К л индамицин (Далацин С) — более активен, чем линкомицин. В высоких дозах действует на токсоплазмы и плазмодии, поэтому дополнительными пока­заниями к применению являются тропическая малярия (в сочетании с хинином) и токсоплазмоз (в сочетании с пириметамином). У клиндамицина более высокая биодоступность, не зависящая от приема пищи.

При применении линкосамидов могут возникать диспептические расстрой­ства, аллергические реакции.

Наиболее тяжелым побочным эффектом является псевдомембранозный колит, который развивается в результате подавления неспорообразующей анаэробной флоры кишечника и размножения Clostridium difficile, продуцирующего энтеротоксины, вызывающие деструктивные изменения в стенке кишечника. Колит имеет тяжелое течение, развиваются язвы, вплоть до прободения кишечника и развития перитонита. Для лечения колита назначают внутрь ванкомицин или метронидазол, а также проводят дезинтоксикационную терапию.

АМИНОГЛИКОЗИДЫ

В основе молекулы аминогликозидов лежит циклический спирт-аминоциклитол, к которому присоединены аминосахара. Группа аминогликозидов представ­лена природными и полусинтетическими препаратами, которые принято класси­фицировать по поколениям:

  1. Аминогликозиды I поколения: стрептомицин, неомицин, канамицин.
  2. Аминогликозиды II поколения: гентамицин, тобрамицин, сизомицин.
  3. Аминогликозиды III поколения: амикацин.

Все аминогликозиды близки по своим свойствам и различаются, главным об­разом, по активности, спектру действия, выраженности побочных эффектов и устойчивости микроорганизмов.

К общим свойствам аминогликозидов относятся следующие:

  1. способность нарушать синтез белка в микробной клетке. Аминогликозиды связываются с 30S-субъединицей рибосом бактериальной клетки, что нарушает движение рибосомы по нити матричной РНК. Аминогликозиды также нарушают процессы считывания кода мРНК, что приводит к синтезу функционально неак­тивных белков;
  2. способность нарушать проницаемость цитоплазматической мембраны мик­роорганизмов;
  3. бактерицидный тип действия;
  4. потенцирование антибактериального действия пенициллинов и цефалоспоринов;
  5. широкий спектр антибактериального действия с преимущественным влия­нием на грамотрицательную флору;
  6. высокая токсичность для человека, которая выражается в специфическом повреждении почек (нефротоксический эффект), слухового и вестибулярного аппарата (ототоксический эффект), угнетении нервно-мышечной передачи, про­являющимся ослаблением дыхания, снижением мышечного тонуса и двигатель­ной функции;
  7. сходные фармакокинетические свойства — аминогликозиды практически не всасываются из желудочно-кишечного тракта (высокогидрофильны), пло­хо проходят через гистагематические барьеры, практически не метаболизируются и выводятся почками в неизмененном виде, создавая в моче высокие концентрации.

Спектр действия аминогликозидов включает многие грамположительные и грамотрицательные микроорганизмы: стафилококки, стрептококки, пневмокок­ки, кишечную палочку, сальмонеллы, шигеллы, клебсиеллы, протей, энтеробактерии, синегнойную палочку. Аминогликозиды I поколения оказывают угнетающее влияние на микобактерии туберкулеза, возбудителей туляремии и чумы. К аминогликозидам не чувствительны анаэробы, спирохеты и простейшие.

Применяют аминогликозиды при инфекциях различной локализации, вызван­ных грамотрицательными микроорганизмами, при синегнойной инфекции, а так­же при туберкулезе, чуме, туляремии, бруцеллезе.

Аминогликозиды I поколения в настоящее время применяются ограниченно в связи с быстрым развитием устойчивости микрофлоры и высокой токсич­ностью.

Стрептомицин применяется для лечения туберкулеза и терапии ряда особо опасных инфекций (чума, туляремия) в комбинации с тетрациклином. Вводят препарат чаще всего внутримышечно. Оказывает выраженное ототоксическое действие.

Неомицин является самым ототоксичным аминогликозидом. Применяет­ся внутрь для санации кишечника при подготовке к операциям на желудочно-кишечном тракте (неомицин не всасывается в кишечнике) и местно для лечения гнойных поражений кожи (пиодермии, инфицированные экземы и др.). Наруж­но неомицин иногда используют с глюкокортикостероидами (входит в состав комбинированных мазей Локакартен-Н, Синалар-Н и др.). Для парентерального введения препарат не используют в связи с высокой токсичностью.

Канамицин применяется внутрь по тем же показаниям, что и неомицин, и парентерально для лечения туберкулеза.

Аминогликозиды II поколения высокоактивны в отношении синегнойной па­лочки и ряда других микроорганизмов, устойчивых к препаратам I поколения и антибиотикам других групп. К препаратам этого поколения медленнее развива­ется устойчивость.

Основным представителем аминогликозидов II поколения является гентамицин. Препарат применяется, главным образом, при тяжелых инфекциях (сепсисе, пневмонии, эндокардите, инфекциях мочевыводящих путей и др.), вызванных грамотрицательными бактериями, устойчивыми к другим антибио­тикам. Вводят препарат внутримышечно и внутривенно. Гентамицин использу­ют также местно при лечении инфицированных ран и ожогов. При применении гентамицина возникают побочные эффекты, типичные для аминогликозидов.

Тобрамицин и сизомицин аналогичны по своим свойствам гентамицину.

К аминогликозидам III поколения относится амикацин. В отличие от гента­мицина амикацин действует на многие штаммы грамотрицательных бактерий, резистентных к аминогликозидам II поколения, поскольку он не инактивируется бактериальными ферментами. Применяется препарат для лечения наиболее тя­желых инфекций, вызванных множественно устойчивой микрофлорой. Вводит­ся внутримышечно и внутривенно.

При парентеральном применении аминогликозидов необходим систематичес­кий контроль за функцией почек, состоянием слуха и вестибулярной системы. Аминогликозиды противопоказаны при заболеваниях почек и слухового нерва, беременности, миастении.

ТЕТРАЦИКЛИНЫ

К группе тетрациклинов относятся природные и полусинтетические антибио­тики, структурную основу которых составляют 4 конденсированных шести-членных кольца.

Классифицируют тетрациклины в зависимости от способа получения: А. Природные (биосинтетические) антибиотики

Тетрациклин, окситетрациклин. Б. Полусинтетические антибиотики

Метациклин (Рондамицин), доксициклин (Вибрамицин). Общие свойства тетрациклинов следующие:

  1. способность ингибировать синтез микробных белков на уровне рибосом. Тетрациклины связываются с 308-субъединицей бактериальных рибосом, в ре­зультате чего приостанавливается процесс удлинения полипептидной цепи;
  2. бактериостатический тип действия. Тетрациклины наиболее активны в от­ношении размножающихся микроорганизмов;
  3. широкий спектр противомикробного действия;
  4. высокая активность в отношении внутриклеточных микроорганизмов;
  5. большая липофильность, обеспечивающая препаратам высокую степень всасывания из желудочно-кишечного тракта, способность преодолевать биоло­гические барьеры и накапливаться в тканях;
  6. способность связывать, в хелатные комплексы двухвалентные ионы – желе­за, кальция, магния, цинка.

Как антибиотики широкого спектра действия тетрациклины применяются при многих инфекционных заболеваниях. В первую очередь тетрациклины показаны при бруцеллезе, риккетсиозах (сыпной тиф, лихорадка Ку и др.), чуме, холере, туляремии. Тетрациклины назначают при заболеваниях, вызываемых кишечной палочкой (перитониты, холециститы и др.), дизентерийной палочкой (бацилляр­ная дизентерия), спирохетами (сифилис), хламидиями (трахома, орнитоз, моче­половой хламидиоз и др.), микоплазмами (возбудителями атипичной пневмонии). Тетрациклины также используют для эрадикации Helicobacter pylori при язвенной болезни желудка и двенадцатиперстной кишки.

Широкое применение тетрациклинов в медицинской практике привело к появлению большого количества резистентных к этим антибиотикам штам­мов стафилококков, энтерококков и пневмококков. При этом вырабатывается перекрестная устойчивость по отношению ко всем препаратам тетрациклинового ряда.

Длительность антибактериального действия препаратов данной группы нео­динакова. По этому признаку среди них следует различать:

а) тетрациклины короткого действия (6-8 ч) – тетрациклин и окситетрациклин;

б) тетрациклины длительного действия (12-24 ч) – метациклин и докси­
циклин.

Тетрациклины обычно назначают внутрь (в капсулах или таблетках, покрытых оболочкой). Препараты короткого действия назначают 4 раза в сутки, длительно­го – 1-2 раза в сутки. Кроме того, при тяжелых формах гнойно-септических за­болеваний растворимые соли тетрациклинов вводят парентерально (внутримы­шечно, внутривенно, в полости тела).

При применении тетрациклинов нередко возникают побочные эффекты ал­лергической и неаллергической природы. Наиболее частым проявлением аллер­гических реакций является кожная сыпь и крапивница, в редких случаях могут возникнуть отек Квинке и анафилактический шок.

Из побочных эффектов неаллергической природы следует отметить раздража­ющее действие на слизистые пищеварительного тракта (тошнота, рвота, боли в животе, метеоризм, поносы) при пероральном применении, а при внутривенном введении в случае попадания на стенку вены – образование тромбофлебитов.

Тетрациклины оказывают гепатотоксическое действие, особенно выраженное при нарушении функций печени.

Антибиотики данной группы оказывают общее катаболическое действие: уг­нетают синтез белка, способствуют выведению из организма аминокислот, вита­минов и других соединений.

Тетрациклины депонируются в костной ткани, в том числе в тканях зубов, и образуют труднорастворимые комплексы с кальцием, в связи с чем нарушается образование скелета, происходит окрашивание и повреждение зубов. По этой причине тетрациклины не следует назначать детям до 12 лет и беременным.

Характерным побочным эффектом тетрациклинов является дисбактериоз и суперинфекция с возникновением орального и других видов кандидоза. В редких случаях может возникнуть псевдомембранозный энтероколит.

Противопоказаны тетрациклины при беременности, кормлении грудью, тя­желой патологии печени и почек.

 

Zdravcity RU
А Вам помог наш сайт? Мы будем рады если Вы оставите несколько хороших слов о нас.
Zdravcity RU
Категории
Рекомендации
Помощь проекту
Интересное
А знаете ли вы, что нажав сочетание клавиш Ctrl+F - можно воспользоваться поиском по сайту?
X
Copyrights © 2015: FARMF.RU - тесты, лекции, обзоры
Яндекс.Метрика
Рейтинг@Mail.ru