Внутриклеточный обмен аминокислот. Общие пути катаболизма

ВНУТРИКЛЕТОЧНЫЙ ОБМЕН АМИНОКИСЛОТ

ОБЩИЕ ПУТИ КАТАБОЛИЗМА АМИНОКИСЛОТ

Реакции переаминирования

Распад большинства аминокислот начинается с переаминирования. Эти реакции не высвобождают аммиак, а переносят аминогруппу с аминокислоты на кетокислотный акцептор. Трансаминазы используют пиридоксальфосфат в качестве коэнзима. Это главный
путь удаления азота у аминокислот. Существуют трансаминазы для большинства аминокислот. После поступления пищевых аминокислот из воротной вены печень трансаминирует значительную часть аминокислот. Исключением являются аминокислоты с разветвленным углеводородным радикалом, для них в печени нет соответствующей трансаминазы. Концентрация таких аминокислот в крови, оттекающей от печени, выше, чем в системе воротной вены.

Стратегия реакции переаминирования — перенос аминогруппы от различных групп донорных аминокислот на ограниченное число альфа-кетокислотных акцепторов, что позволяет выделить центральный путь метаболизма аминокислот. Большинство трансаминаз использует альфа-кетоглутаровую кислоту как основной акцептор аминогруппы. Трансаминазы обычно называют по аминокислотам, которые служат донором аминогруппы.

Субстратная специфичность трансаминаз. Каждая трансаминаза специфична для одного или нескольких аминокислотных доноров.

Акцептором аминогруппы для большинства трансаминаз является -кетоглутаровая кислота. Однако оксалоацетат и ПВК также можно рассматривать в качестве важных акцепторов аминогрупп.

Реакции дезаминирования

Отщепление аминогруппы у аминокислоты называют дезаминированием. Различают два типа реакций: прямое и непрямое дезаминирование. Имеется несколько типов прямого дезаминирования. Эти реакции генерируют свободный аммиак — токсическое соединение, подлежащее связыванию и обезвреживанию.

Прямое дезаминирование:

Выделены ферменты, катализирующие окислительное дезаминирование с участием флавиновых коферментов. Эти ферменты обладают выраженной специфичностью к D- и
L-аминокислотам. Они получили название оксидаз аминокислот из-за их способности взаимодействовать с молекулярным кислородом с образованием пероксида водорода. Особо высокой активностью в клетках обладают оксидазы D-аминокислот. Окислительное дезаминирование L-аминокислот при помощи оксидаз аминокислот у большинства млекопитающих обнаружено только в печени и почках. Некоторые из этих реакций не играют важной роли у человека, а некоторые аминокислоты дезаминируются при помощи специальных реакций.

Окислительное дезаминирование глутаминовой кислоты с образованием -кетоглу-тарата и аммиака:

Эта реакция протекает с участием НАД+ или НАДФ+. Фермент — глутаматдегидрогеназа присутствует в митохондриальном матриксе в высоких концентрациях и обладает высокой активностью. Аммиак, полученный в печеночных митохондриях, используется для синтеза мочевины.

Пути обезвреживания аммиака в организме — синтез глутамина и мочевины.

1. Синтез глутамина. Реакция катализируется глутаминсинтетазой:

Распределение и субклеточная локализация. Реакция протекает в цитозоле клеток всех тканей, но особенно выражена в мозге, где аммиак наиболее токсичен, и мышцах, где обмен белков мышц сопровождается образованием значительных количеств аммиака.

Функции глутамина:

a) во всех тканях глутамин является донором азота для синтеза важных молекул, в частности, для пуринового и пиримидинового синтеза;

б) является нетоксичной формой транспорта аммиака из разных тканей к клеткам печени, где он превращается в мочевину;

в) в кишечнике служит источником энергии для энтероцитов;

г) в почках участвует в поддержании кислотно-щелочного равновесия. Гидролиз амидной группы в боковой цепи глутамина глутаминазой позволяет связывать протоны. Это особенно важно в условиях метаболического ацидоза.

2. Синтез мочевины. Печень — единственный орган, клетки которого содержат все ферменты синтеза мочевины и, следовательно, являются главным местом ее синтеза. Участвуют митохондриальные ферменты и ферменты цитозоля.

Суммарная реакция синтеза мочевины:

Энергетический баланс. 3 молекулы АТФ расходуется на синтез каждой молекулы мочевины.

  1. Синтез карбамоилфосфата (происходит в митохондриях):

2. Орнитиновый цикл мочевинообразования:

Реакции декарбоксилирования

Синтез серотонина:

Биологическая роль серотонина:

1. Центральное действие (ЦНС) — повышение аппетита, регуляция памяти, настроения, поведения, функций сердечно-сосудистой и эндокринной систем.

2. Периферическое действие — активирует перистальтику, повышает агрегацию тромбоцитов, проницаемость мелких сосудов, оказывает радиопротекторное действие.

Синтез гистамина:

Биологическая роль гистамина: повышает тонус гладкой мускулатуры, расширяет капилляры, снижает АД, повышает секрецию желудка и выделение желчи, участвует в развитии воспаления и развитии боли.

Синтез γ-аминомасляной кислоты (ГАМК):

Биологическая роль ГАМК: медиатор торможения.

Синтез дофамина, норадреналина и адреналина:

Биологическая роль катехоламинов: увеличивают потребление кислорода клетками, органами и организмом; повышают активность ферментов цикла Кребса, дыхательной цепи; стимулируют синтез АТФ; повышают АД.

 

А Вам помог наш сайт? Мы будем рады если Вы оставите несколько хороших слов о нас.
Оставить отзыв
Категории
Рекомендации
Подсказка
Нажмите Ctrl + F, чтобы найти фразу в тексте
Помощь проекту
А знаете ли вы, что нажав сочетание клавиш Ctrl+F - можно воспользоваться поиском по сайту?
X
Copyrights © 2015: FARMF.RU - тесты, лекции, обзоры
Яндекс.Метрика
Рейтинг@Mail.ru