Нервная ткань. Биохимия, состав, строение, обмен веществ.

Нервная ткань. Биохимия, состав, строение, обмен веществ.

Нервная ткань. Биохимия

Функции нервной системы:

  1. Воспринимает информацию из внешней и внутренней среды;
  2. Перерабатывает полученную информацию;
  3. Хранит полученную информацию;
  4. Генерирует сигналы, обеспечивающие ответные реакции, адекватные действующим раздражителям;

Благодаря этому, нервная система координирует взаимодействие организма с внешней средой, координирует функции различных органов и тканей и осуществляет интеграцию частей организма в единое целое, является центральным органом поддержания гомеостаза.

КЛАССИФИКАЦИЯ НЕРВНОЙ СИСТЕМЫ
Анатомически нервную систему условно подразделяют на:

  • 1. центральную нервную систему (ЦНС), которая включает головной и спинной мозг;
  • 2. периферическую нервную систему (ПНС), к которой относят периферические нервные узлы, нервы и нервные окончания.

Физиологически, в зависимости от характера иннервации органов и тканей, нервную систему разделяют на:

  • 1. соматическую (анимальную) нервную систему, которая регулирует преимущественно функции произвольного движения.
  • 2. автономную (вегетативную) нервную систему, которая регулирует деятельность внутренних органов, сосудов и желез. Она осуществляет адаптационно-трофическую функцию.
    а). симпатическая нервная система (СНС);
    б). парасимпатическая нервная система (ПСНС).
    СНС и ПСНС различаются по локализации центров в мозге и периферических узлов, а также характером влияния на внутренние органы.

Нервная ткань. КЛАССИФИКАЦИЯ

Функциональной тканью нервной системы является нервная.

  • Нервная ткань – это высокоспециализированная ткань, обладающая возбудимостью и проводимостью, она состоит из нейронов и нейроглии (макро- и микроглия).
    По клеточному составу нервную ткань делят на серое и белое вещество;
  • Серое вещество образовано скоплением нейронов, тонких немиелинизированных нервных волокон и нейроглии (астроциты, олигодендроциты), которое в ЦНС называется ядром, а в ПНС – ганглием (узлом).
  • Белое вещество представлено совокупностью аксонов, покрытых миелиновой оболочкой и глиальных клеток (астроцитов). Такие пучки нервных волокон в ЦНС носят название трактов, в ПНС они образуют нервы. Для каждого тракта, характерно преобладание волокон, образованных однотипными нейронами.

Нервная ткань. КЛЕТКИ НЕРВНОЙ ТКАНИ

Нейрон

Нейрон – это функциональная единица нервной системы, он состоит из тела (сомы), многочисленных ветвящихся коротких отростков – дендритов и одного длинного отростка – аксона, длина которого может достигать несколько десятков сантиметров. Аксоны и дендриты оканчиваются синаптическими образованиями. Дендриты, проводят нервный импульс по направлению к телу клетки, а аксон, проводит его от сомы. Таким образом, дендриты и аксоны отвечают соответственно за получение и передачу сигнала. Тело нейрона является трофическим центром, нарушение целостности которого ведет клетку к гибели.
Тело нейрона окружено плазматической мембраной – плазмалеммой. Плазмалемма выполняет структурную функцию, служит барьером для поддержания внутриклеточного состава (клеточные органеллы, везикулы нейромедиаторов, метаболиты), играет активную (ионные насосы, ферменты) и пассивную (ионные каналы, высвобождение нейромедиатора) роли в создании мембранного потенциала, транспорте веществ через мембрану и передаче нервного импульса.
Внутри нейрон заполнен нейроплазмой (цитоплазмой). Объем нейроплазмы аксона и дендритов, может в несколько раз превышать объем нейроплазмы в теле нейрона. Нейроплазма содержит все основные органеллы клетки.
В теле нейрона и проксимальных отрезках дендритов под плазмалеммой находится так называемая подповерхностная мембранная структура. Это – цистерны, которые расположены параллельно поверхности плазмалеммы и отделены от нее очень узкой светлой зоной. Предполагают, что цистерны играют важную роль в метаболизме нейрона.

ЭПС нейрона хорошо развита. Мембраны ЭПС связаны с плазмалеммой и оболочкой ядра нейрона.
В комплексе Гольджи сосредоточены главным образом липидные компоненты клетки. Митохондрии нейронов содержат меньше ферментов, участвующих в процессах окисления ЖК и АК, чем митохондрии других тканей. Лизосомы в нейроне обнаруживаются постоянно.
В нейроплазме содержатся специальные органоиды – нейрофибриллы и вещество Ниссля (тигроид). Тигроид представляет собой глыбки базофильного вещества, состоящего из РНК и белков, располагающиеся вокруг ядра и заходящие в основания дендритов. Нейрофибриллы – тонкие нити, расположенные в разных направлениях и формирующие густую сеть; они состоят из очень тонких (70 – 200 А) протофибрилл. Нейрофибриллы служат поддерживающим остовом нейрона.

Аксоплазматический транспорт
Нейроплазма нейрона находится в постоянном движении. Это движение называемое аксональным транспортом, оно осуществляет связь между телом нейрона и нервным окончанием.
Транспорт нейроплазмы идет с затратой АТФ с помощью микротрубочек, состоящих из тубулина. Ассоциацию тубулина в микротрубочки контролируют белки МАР, ТАР, ГТФ, Са2+, кальмодулин, процессы фосфорилирования/дефосфорилирования и т.д. Сборку микротрубочек и аксональный транспорт ингибирует колхицин.
Различают анте- и ретроградный аксональный транспорт, в первом случает компоненты двигаются от тела нейрона к синапсу, во втором – обратно. Существует медленный аксональный поток (0,2–1,0 мм/сут), промежуточный ( 2-50 мм/сут) и быстрый (200-400 мм/сут). Каждый вид молекул переносится с характерной для него скоростью.

  • Тубулин, субъединицы нейрофиламентов, актин и миозин транспортируются медленно;
  • митохондрии с промежуточной скоростью;
  • мембранные белки, гликопротеины, гликолипиды, ферменты синтеза медиатора и медиаторы – быстро.
  • ДНК, РНК и ганглиозиды не транспортируются.

Ретроградный транспорт удаляет продукты деградации синапсов, переносит ферменты, а также субстраты, поглощенные преситаптической мембраной, например фактор роста нервов, токсин столбняка и нейротропные вирусы.

Глиальные клетки

Нейроглия (от греческого glia – клей) это клетки нервной системы, которые не проводят нервные импульсы. Глиальные клетки занимают 50% объема центральной нервной системы человека и составляют более 90% от всех ее клеток.

В ЦНС выделяют 2 вида глии:

1. Макроглия

  • Астроцитарная глия обеспечивает микроокружение нейронов, выполняет опорную и трофическую функции в сером и белов веществе, участвует в метаболизме нейромедиаторов, входят в состав гематоэнцефалического барьера.
  • Эпендимная глия образует выстилку желудочков головного мозга и входит в состав гематоликворного барьера.
  • Олигодендроглия встречается в сером и белом веществе; она обеспечивает барьерную функцию, участвует в формировании миелиновых оболочек нервных волокон, регулирует метаболизм нейронов, захватывает нейромедиаторы.

2. Микроглия – специализированные макрофаги ЦНС. Активизируются при воспалительных и дегенеративных заболеваниях. Выполняют в ЦНС роль антиген-представляющих дендритных клеток.

Клетки макроглии обладают более высоким мембранным потенциалом, чем нейроны, который является чисто калиевым. Глиальные клетки выполняют роль калиевого буфера, они поддерживают внеклеточную концентрацию К+.
Между собой глиальные клетки связаны контактными зонами, через которые происходит метаболический обмен. Напротив, нейроны всегда отделены друг от друга щелью (не менее 20нм). Обмен веществами происходит также между глией и аксонами.
Глиальные клетки обеспечивают образование нейронами синапсов.

Шванновские клетки (глиальные клетки ПНС), подобно олигодендроглии ЦНС, обертываются вокруг аксона и образуют миелин, который электроизолирует аксон и ускоряет проведение импульса.
Шванновские клетки участвуют в восстановлении поврежденных нервов, кроме того, после денервации они могут заменять денервированное нервное окончание в мышце и даже выделять медиатор.

Нервная ткань. ХИМИЧЕСКИЙ СОСТАВ 

В связи с различием строения, серое и белое вещество нервной ткани отличаются по химическому составу.

Химический состав серого и белого вещества головного мозга человека

Компонент

Серое вещество, %

Белое вещество,%

Вода

84,0

70,0

Сухой остаток

16,0

30,0

Белки

8,0

9,0

Липиды

5,0

17,0

Минеральные вещества

1,0

2,0

 

Нервная ткань. Белки нервной ткани

В головном мозге на белки приходиться 40% сухой массы. В настоящее время выделено более 100 белковых фракций нервной ткани (методами хроматографии, электрофореза и экстракции буферными растворами).

В нервной ткани содержатся простые и сложные белки.

1. Простые белки

  • Нейроальбумины – основные растворимые белки (89-90%) нервной ткани, являются белковым компонентом фосфопротеинов, в свободном состоянии встречаются редко. Легко соединяются с липидами, нуклеиновыми кислотами, углеводами и другими небелковыми компонентами.
  • Нейроглобулины, содержатся в небольшом количестве (в среднем 5%).
    Катионные белки – основные белки (рН 10,5 – 12,0), например, гистоновые. При электрофорезе они движутся к катоду.
  • Нейросклеропротеины (опорные белки). Например, нейроколлагены, нейроэлластины, нейростромины и др. Они составляют 8-10% от всех простых белков нервной ткани, локализованы в основном в белом веществе головного мозга и ПНС, выполняют структурно-опорную функцию.

2. Сложные белки
Сложные белки нервной ткани представлены: нуклеопротеинами, липопротеинами, протеолипидами, фосфопротеинами, гликопротеинами и т.д.

  • Гликопротеины – содержат олигосахаридные цепи, которые придают специфические отличия клеточным мембранам. Нейроспецифические гликопротеины участвуют в формировании миелина, в процессах клеточной адгезии, нерорецепции и взаимном узнавании нейронов в онтогенезе и при регенерации.
  • Протеолипиды – в наибольших количествах содержатся в миелине и в небольших количествах – в синаптических мембранах и синаптических пузырьках.

Нейроспецифические белки

В цитоплазме нейронов присутствуют кальцийнейрин, белок 14-3-2, белок S-100, белок Р-400.

  • Белок S-100 (или кислый белок), содержит много глутаминовой и аспарагиновой кислот, гомологичен мышечному тропонину С, находиться в цитоплазме или связан с мембранами. На 85-90% он сосредоточен в нейроглии, и на 10-15% в нейронах. Участвует в развитии нервной системы и ее пластичности. Концентрация S-100 возрастает при обучении животных.
  • Белок 14-3-2 – кислый белок, который преимущественно локализован в нейронах ЦНС.
  • Белок Р-400 находится в мозжечке мышей, где, возможно, отвечает за двигательный контроль.

К сократительным белкам нейрона относятся нейротубулин, нейростенин, актиноподобные белки (кинезин и др.). Они обеспечивают ориентацию и подвижность цитоскелета (микротрубочек и нерофиламентов), активный транспорт веществ в нейроне, участвуют в работе синапсов.
В нейронах имеются белки, осуществляющие гуморальную регуляцию. Это некоторые гликопротеины гипоталамуса, нейрофизины и подобные им белки.
На мембране нейронов расположены нейроспецифические поверхностные антигены (NS1, NS2, L1) с неизвестной функцией и факторы адгезии клеток (N-САМ), важные для развития нервной системы.
Нейроспецифические белки участвуют в осуществлении всех функций нервной системы – генерации и проведении нервного импульса, процессах переработки и хранении информации, синаптической передаче, клеточном узнавании, рецепции и др.

Нервная ткань. Ферменты нервной ткани

В мозговой ткани содержится большое количество ферментов, катализирующих обмен белков, жиров и углеводов. Также цитоплазма нейронов содержит ферменты метаболизма посредников и медиаторов.

Мозговая ткань характеризуется высокой активностью: ЛДГ (ЛДГ1,ЛДГ2), АСТ, альдолазы, креатинкиназы (ВВ), гексокиназы, малатдегидрогеназы, глутаматдегидрогеназы, холинэстеразы, кислой фосфатазы, моноаминоксидазы. В глиальных клетках преобладает ЛДГ5, а в нейронах – ЛДГ1.
Для мозга характерна так же высокая активность ферментов метаболизма циклических нуклеотидов, которые принимают участие в синаптической передаче нервного импульса.

Нервная ткань. Аминокислоты нервной ткани

Аминокислотный фонд мозга человека составляет в среднем 34ммоль на 1г ткани, что значительно превышает их содержание, как в плазме крови, так и в СМЖ.
Высокая концентрация АК в нервной ткани достигается путем их многоступенчатого активного и пассивного транспорта из плазмы крови. Сначала АК переносятся через гематоэнцефалический барьер эндотелия мозговых капилляров, затем они переходят из внеклеточной жидкости в клетки мозга, а далее – в субклеточные органеллы. Активность систем транспорта аминокислот, так же как и состав их пула, изменяются в процессе развития мозга. Аминокислоты проникают в мозг молодых животных быстрее и достигают более высоких концентраций, чем у взрослых.
Более 50% α-аминоазота головного мозга приходится на долю глутаминовой кислоты, глутамина и глутатиона. Специфичными для мозговой ткани являются ГАМК, N-ацетиласпарагиновая кислота и цистатионин.
В нервной ткани аминокислоты распределяются неравномерно, в основном это касается аминокислот, выполняющих функцию нейромедиаторов (глутаминовая кислота, ГАМК, глицин и др). N-ацетиласпарагиновой кислоты больше в сером веществе, чем в белом. Также она есть в ПНС и сетчатке. Содержание цистаниона выше в белом веществе, чем в сером, и оно повышается в процессе развития.

Содержание (мкмоль/г) свободных аминокислот в мозге, плазме и СМЖ человека

Аминокислота

мозг

Плазма крови

СМЖ

Глутаминовая

10,6

75%

0,05

23%

0,225

60%

N-ацетиласпарагиновая

5,7

Глутамин

4,3

0,70

0,030

ГАМК

2,3

Аспарагиновая

2,2

0,01

0,007

Цистатионин

1,9

25%

77%

40%

Таурин

1,9

0,10

Глицин

1,3

0,40

0,013

Аланин

0,9

0,40

0,017

Глутатион

0,7

0,10

0,010

Серин

0,7

0,10

0,010

Треонин

0,2

0,15

0,025

Триптофан

0,05

0,05

0,010

Валин

0,2

0,25

0,013

Лизин

0,1

0,12

0,014

Лейцин

0,1

0,15

0,004

Пролин

0,1

0,10

Аспарагин

0,1

0,07

Метионин

0,1

0,02

0,003

Изолейцин

0,1

0,10

0,080

Аргинин

0,1

0,10

0,060

Цистеин

0,1

0,10

0,002

Фенилаланин

0,1

0,10

0,010

Тирозин

0,1

Гистидин

0,1

0,10

0,003

 

Нервная ткань. Липиды нервной ткани

Нервная ткань отличается высоким содержанием и разнообразием липидов, которые придают ей специфические особенности.
В сером веществе фосфоглицериды составляют более 60% от всех липидов, а в белом – около 40%. В белом веществе содержится больше холестерина, сфингомиелинов и особенно цереброзидов, чем в сером веществе.

  • Холестерин составляет около 25% от общего содержания липидов. При этом в мозге мало эфиров холестерина. ХС повышает электроизоляционные свойства клеточных мембран, защищает их от ПОЛ, повышает их механическую прочность.
  • Свободных жирных кислот в мозге мало, а этерефицированных жирных кислот в мозге очень много, в основном это пальмитиновая, стеариновая, олеиновая и арахидоновая кислоты.
  • Сфинголипиды (ганглиозиды и цереброзиды) участвуют в процессах коммуникации нервной клетки с окружающей ее средой. Они обеспечивают передачу сигналов с наружной поверхности клетки в ее внутреннее пространство. Разнообразие углеводных частей сфинголипидов делает их носителями специфической информации.
  • Ганглиозиды находятся преимущественно в сером веществе. Выделяют 4 основных ганглиозида – Gм1, GD1a, GD1b и GT1. Зрительная кора относительно богата GT1 и GD1b, в коре головного мозга содержатся в основном GT1, в белом веществе – Gм1.
    Функции ганглиозидов:
    1). являются рецепторами внешних сигналов;
    2). с гликопротеинами отвечают за специфичность клеточной поверхности, распознавание клеток и их адгезию;
    3). участвуют в развитии нервной системы при образовании «правильных» межклеточных связей;
    4). участвуют в коммуникации между мембранами аксонов и окружающими их олигодендроглиальными клетками;
    5). участвуют в функциональной адаптации зрелой нервной системы. Синтез ганглиозидов связан с дифференциацией нейронов.
  • Цереброзиды находятся преимущественно в белом веществе, особенно их много миелине. В цереброзидах и сульфатидах ЦНС превалируют производные галактозы. Количество галактоцерамидов и галактосульфатидов возрастает по мере миелинизации.
  • Фосфатидилинозитолы в ЦНС не превышают 0,5-2% от общих липидов. Локализованы в плазматических мембранах, в миелине (до 95% всех фосфоинозитов мозга), в ЭПС, наружной митохондриальной и ядерной мембранах. Участвуют в инозитолтрифосфатной системе передаче сигнала с мускариновых и α1-адренергических рецепторов.

Нервная ткань. Углеводы нервной ткани

По сравнению с другими тканями ткань мозга содержит мало глюкозы и гликогена. У новорожденных концентрация гликогена в мозге выше, чем у взрослых.
Олигосахариды составляют 2-10% массы плазматической мембраны, большая их часть связана с белками и меньшая с – гликолипидами. Практически все они локализованы на внешней поверхности плазматической мембраны и придают ей индивидуальность и специфичность.

Нервная ткань. Нуклеотиды нервной ткани

Большинство нейронов ЦНС диплоидны, а небольшая их часть в некоторых отделах ЦНС (клетки Пуркинье мозжечка) может содержать избыточное количество ДНК.
Особенностями хроматина нейронов являются необычно короткие нуклеосомные единицы, наличие редких вариантов гистонов, большое разнообразие негистоновых белков и высокая матричная активность.
Содержание РНК в нейронах велико, что связано с активным синтезом белка. Среднее отношение РНК/ДНК может достигать 50 и редко бывает ниже 3. В печени, поджелудочной железы, почках оно составляет 2-4,5.
Содержание цАМФ и цГМФ в головном мозге значительно выше, чем во многих других тканях. Уровень цАМФ в мозге составляет в среднем 1-2, а цГМФ – до 0,2 нмоль на 1г ткани.

Нервная ткань. Макроэргические соединения нервной ткани

Количество макроэргических соединений в нервной ткани невелико, их распределение примерно одинаково во всех отделах мозга. Макроэргические соединения представлены в основном креатинфосфатом и АТФ, на долю ГТФ, ЦТФ, УТФ приходиться менее 10% всех макроэргов. Содержание креатина и креатинфосфата более, чем в 2 раза превышает количество адениновых нуклеотидов. Количество АТФ в нервной ткани примерно такое же, как и в печени, зато АДФ и АМФ в мозге значительно ниже. Пиримидиновые основания не синтезируются в мозге, а поступают из печени.

Нервная ткань. Минеральные вещества нервной ткани
Na+, K+, Cu2+, Fe2+, Ca2+, Mg2+ и Mn2+ распределены в головном мозге относительно равномерно между серым и белым веществом. Содержание фосфора в белом веществе выше, чем в сером. В мозговой ткани существует дефицит анионов, который покрывается за счет белков и липидов (у липидов нервной ткани важная роль в ионном балансе).

Белковый и липидный состав миелина, белого и серого вещества человека

Компонент

Содержание %

В миелине

В белом веществе

В сером веществе

Белки

30,0

39,0

55,3

Липиды

70,0

54,9

32,7

Общ.фосфолипиды

43,1

45,9

69,5

Лецитин

11,2

12,8

26,7

Фофатидилсерин

4,8

7,9

8,7

Фосфатидилинозит

0,6

0,9

2,7

Холестерин

27,7

27,5

22,0

Сфингомиелин

7,9

7,7

6,9

Церебозиды

22,7

19,8

5,4

Плазмогены

12,3

11,2

8,8

ганглиозиды

3,8

1,7

5,4

 

Нервная ткань. Строение нервного волокна. Миелиновая оболочка

Из аксонов нейронов образуются нервные волокна. Каждое волокно состоит из осевого цилиндра (аксона), внутри которого находится аксоплазма с нейрофибриллами, митохондриями и синаптическими пузырьками.

В зависимости от строения оболочек, окутывающих аксоны, нервные волокна делят на: безмиелиновые (безмякотные) и миелиновые (мякотные).

  • 1. Безмиелиновое волокно
    Безмиелиновое волокно состоит из 7-12 тонких аксонов, которые проходят внутри тяжа, образованного цепочкой нейроглиальных клеток.
    Безмиелиновые волокна имеют постганглионарные нервные волокна, входящие в состав вегетативной нервной системы.
  • 2. Миелиновое волокно
    Миелиновое волокно состоит из одного аксона, который окутан миелиновой оболочкой и окружен глиальными клетками.

Миелиновая оболочка образована плазматической мембраной Шванновской или олигодендроглиальной клетки, которая сложена вдвое и многократно обернута вокруг аксона. По длине аксона миелиновая оболочка образует короткие чехольчики – междоузлия, между которыми имеются немиелизированные участки – перехваты Ранвье.
Миелиновое волокно более совершенно, чем безмиелиновое, т.к. оно обладает более высокой скоростью передачи нервного импульса.
Миелиновые волокна имеют проводниковая система соматической нервной системы, преганглионарные волокна вегетативной нервной системы.

Молекулярная организация миелиновой оболочки. Нервная ткань

 

Нервная ткань. Химический состав миелина

Миелин содержит много липидов, мало цитоплазмы и белков. Мембрана миелиновой оболочки в расчете на сухую массу содержит 70% липидов (что в целом составляет около 65% всех липидов мозга) и 30% белков. 90% всех липидов миелина приходиться на холестерин, фосфолипиды и цереброзиды. Миелин содержит немного ганглиозидов.
Белковый состав миелина периферической и центральной нервной системы различен.

Миелин ЦНС содержит три белка:

  • 1. Протеолипид, составляет 35 – 50% от общего содержания белка в миелине, имеет молекулярную массу 25кДа, растворим в органических растворителях;
  • 2. Основной белок А1, составляет 30% от общего содержания белка в миелине, имеет молекулярную массу 18кДа, растворим в слабых кислотах;
  • 3. Белки Вольфграма – несколько кислых белков большой массы растворимых в органических растворителях, функция которых неизвестна. Составляют 20% от общего содержания белка в миелине.
    В миелине ПНС, протеолипид отсутствует, основной белок представлен белками А1 (немного), Р0 и Р2.

В миелине обнаружена ферментативная активность:

  • 1. холестеролэстеразы;
  • 2. фосфодиэстеразы, гидролизирующей цAMФ;
  • 3. протеинкиназы А, фосфорилирующей основной белок;
  • 4. сфингомиелиназы;
  • 5. карбоангидразы.
    Миелин благодаря своему строению обладает более высокой стабильностью (устойчивостью к разложению), чем другие плазматических мембран.

Нервная ткань. ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ В НЕРВНОЙ ТКАНИ

Энергетический обмен нервной ткани

Для мозга характерна высокая интенсивность энергетического обмена с преобладанием аэробных процессов. При массе 1400г (2% массы тела), он получает около 20% крови, выбрасываемой сердцем и приблизительно 30% всего кислорода, находящегося в артериальной крови.
Максимальный энергетический обмен в мозге наблюдается к периоду окончания миелинизации и завершения процессов дифференцировки у детей в возрасте 4 лет. При этом быстро растущая нервная ткань потребляет около 50% всего кислорода поступающего в организм.

Максимальная скорость дыхания обнаружена в коре больших полушарий, минимальная – в спинном мозге и периферических нервах. Нейронам свойственен аэробный обмен, тогда как метаболизм нейроглии адаптирован и к анаэробным условиям. Интенсивность дыхания серого вещества в 4 раза выше, чем белого.

В отличие от других органов, головной мозг практически не располагает запасами кислорода. Резервный кислород мозга расходуется в течение 10-12 секунд, что объясняет высокую чувствительность нервной системы к гипоксии.
Основным энергетическим субстратом нервной ткани является глюкоза, окисления которой обеспечивается ее энергией на 85-90%. Нервная ткань потребляет до 70% свободной глюкозы, выделяемой из печени в артериальную кровь. В физиологических условиях 85-90% глюкозы метаболизируется аэробным путем, а 10-15% – анаэробным.

В качестве дополнительных энергетических субстратов нейроны и глиальные клетки могут использовать аминокислоты, в первую очередь глутамат и аспартат.
В экстремальных состояниях нервная ткань переключается на кетоновые тела (до 50% всей энергии).
В ранний постнатальный период в мозге также окисляются свободные жирные кислоты и кетоновые тела.

Полученная энергия тратится в первую очередь:

  • 1. на создание мембранного потенциала, который используется для проведения нервных импульсов и активного транспорта;
  • 2. для работы цитоскелета, обеспечивающего аксональный транспорт, выделение нейромедиаторов, пространственной ориентации структурных единиц нейрона;
  • 3. для синтеза новых веществ, в первую очередь нейромедиаторов, нейропептидов, а также нуклеиновых кислот, белков, липидов;
  • 4. для обезвреживания аммиака.

Нервная ткань. Обмен углеводов нервной ткани
Нервная ткань характеризуется высоким углеводным обменом, в котором преобладает катаболизм глюкозы. Так как нервная ткань инсулиннезависима, с высокой активностью гексокиназы (имеет низкую константу Михаэлиса Ментона) и низкой концентрацией глюкозы, глюкоза поступает из крови в нервную ткань постоянно, даже если в крови мало глюкозы и отсутствует инсулин.
Активность ПФШ нервной ткани невелика. НАДФН2 используется при синтезе нейромедиаторов, аминокислот, липидов, гликолипидов, компонентов нуклеиновых кислот и для работы антиоксидантной системы.
Высокая активность ПФШ наблюдается у детей в период миелинизации и при травмах головного мозга.

Нервная ткань. Обмен белков и аминокислот нервной ткани
Нервная ткань характеризуется высоким обменом аминокислот и белков.
Скорость синтеза и распада белков в разных отделах головного мозга неодинакова. Белки серого вещества больших полушарий и белки мозжечка отличаются высокой скоростью обновления, что связано с синтезом медиаторов, БАВ, специфических белков. Белое вещество, богатое проводниковыми структурам, обновляется особенно медленно.

Аминокислоты в нервной ткани используется как:

  • источник «сырья» для синтеза белков, пептидов, некоторых липидов, ряда гормонов, витаминов, биогенных аминов и др. В сером веществе преобладает синтез БАВ, в белом – белков миелиновой оболочки.
  • нейротрансмиттеры и нейромодуляторы. Аминокислоты и их производные участвуют в синаптической передаче (глу), в осуществлении межнейрональных связей.
  • источник энергии. Нервная ткань окисляет в ЦТК аминокислоты глутаминовой группы и аминокислоты с разветвленной боковой цепью (лейцин, изолейцин, валин).
  • для выведения азота. При возбуждение нервной системы возрастает образование аммиака (в первую очередь за счет дезаминирования АМФ), который связывается с глутаминовой кислотой с образованием глутамина. Реакцию с затратой АТФ катализирует глутаминсинтетаза.

Аминокислоты глутаминовой группы имеют самый активный метаболизм в нервной ткани.
N-ацетиласпарагиновая кислота (АцА) является частью внутриклеточного пула анионов и резервуаром ацетильных групп. Ацетильные группы экзогенной АцА служат источником углерода для синтеза жирных кислот в развивающемся мозге.
Ароматические аминокислоты имеют особое значение как предшественники катехоламинов и серотонина.

Серосодержащие аминокислоты
Метионин является источником метильных групп и на 80% используется для синтеза белка.
Цистатионин важен для синтеза сульфитидов и сульфатилрованных мукополисахаридов.

Обмен азота нервной ткани
Непосредственным источником аммиака в головном мозге служит непрямое дезаминирование аминокислот с участием глутаматдегидрогеназы, а так же дезаминирование с участием АМФ–ИМФ цикла.

 

Обезвреживание токсичного аммиака в нервной ткани происходит с участием α-кетоглутарата и глутамата.

 

Нервная ткань. Липидный обмен нервной ткани

Особенностью обмена липидов в мозге является то, что они не используются в качестве энергетического материала, а в основном идут на строительные нужды. Липидный обмен в целом невысокий и различается в белом и сером веществе.
В нейронах серого вещества из фосфоглицеридов наиболее интенсивно обновляются фосфотидилхолины и особенно фосфотидилинозитол, который является предшественником внутриклеточного посредника ИТФ.
Обмен липидов в миелиновых оболочках протекает медленно, очень медленно обновляются холестерин, цереброзиды и сфингомиелины. У новорожденных холестерин синтезируется в самой нервной ткани, у взрослых этот синтез резко снижается, вплоть до полного прекращения.

СПИНОМОЗГОВАЯ ЖИДКОСТЬ – КАК ДИАГНОСТИЧЕСКИЙ
ПОКАЗАТЕЛЬ СОСТОЯНИЯ НЕРВНОЙ ТКАНИ

Общий объем спинномозговой жидкости (СМЖ) – ликвора – в норме у взрослого человека около 140 – 150 мл, который каждые 3-4 ч обновляется. Ликвор является ультрафильтратом плазмы, но за счет гематоэнцефалического барьера он отличается по составу от сыворотки крови.

Химический состав спинномозговой жидкости

Компоненты

Содержание

СМЖ

Плазма крови

Общий белок, г/л

0.15-0.40

65-85

Альбумины/глобулины

4/1

1,2-1,4

Остаточный азот, ммоль/л

8,57-14,28

Азот аминокислот, ммоль/л

1,14-1,93

2,9-4,3

Азот мочевины, ммоль/л

2,86-7,14

3,3-6,6

Глюкоза, ммоль/л

2,50-4,16

3,6-5,5

Молочная кислота, ммоль/л

1,67

1,1-1,2

Холестерин, ммоль/л

2,62-5,20

3,9-6,5

Триацилглицерины

Следы

1,2-2,8

Лецитин

Следы

Na+, ммоль/л

146

132-150

K+, ммоль/л

3,5-4,0

3,8-5,4

Ca , ммоль/л

1,5

2,25-2,80

 

В спинномозговой жидкости:

  • вода составляет 99%, сухой остаток – около 1%.
  • почти нет белка и мало аминокислот. Некоторые аминокислоты, например глутаминовая кислота, почти не проникают через геметоэнцефалический барьер, а их амиды, в частности глутамин, легко преодолевает этот барьер.
  • меньше содержится глюкозы, холестерина и практически отсутствуют ТГ и фосфолипиды.
  • содержание натрия и калия близко к показателям в плазме, кальция же почти в 2 раза меньше.
  • содержится не более 5 клеток в 1 мкл (обычно лимфоцитов).

Исследование ликвора имеет важное диагностическое значение:

  • При внутричерепном кровоизлиянии СМЖ будет содержать кровь и будет наблюдаться ксантохромии (результат деградации гемоглобина из распавшихся эритроцитов, проявляется спустя 2-4ч от момента кровоизлияния).
  • Для бактериальной инфекции характерен значительный нейтрофильный плеоцитоз, для вирусных и хронических воспалительных заболеваний – лимфоцитарный плеоцитоз, для паразитарных заболеваний – эозинофильный плеоцитоз. отмечается после..
  • Субарахноидальные кровоизлияния, тромбозы венозных синусов, многие органические заболевания ЦНС сопровождаются плеоцитозом (увеличение числа лейкоцитов в СМЖ).
  • Признаком бактериального, туберкулезного грибкового или канцероматозного менингитов является снижение содержания глюкозы в СМЖ.
  • Содержание белка в СМЖ нарастает при менингитах и энцефалитах, карциноматозе, нейросифилисе, некоторых формах опухолей головного мозга (в 10-20 раз), абсцессе головного мозга.

БИОХИМИЧЕСКИЕ ОСНОВЫ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ

Механизмы передачи нервного импульса по нервному волокну
В клеточной мембране располагаются Na+, K+ –АТФазы, натриевые и калиевые каналы.
Na+, K+–АТФаза за счет энергии АТФ постоянно перекачивает Na+ наружу и К+ внутрь, создавая трансмембранный градиент концентраций этих ионов. Натриевый насос ингибируется уабаином.

Натриевые и калиевые каналы могут пропускать Na+ и К+ по градиентам их концентраций. Натриевые каналы блокируются новокаином, тетродотоксином, а калиевые – тетраэтиламмонием.
Работа Na+,K+–АТФазы, натриевых и калиевых каналов может создавать на мембране потенциал покоя и потенциал действия.

Потенциал покоя – это разность потенциалов между наружной и внутренней мембраной в условиях покоя, когда натриевые и калиевые каналы закрыты. Его величина составляет -70мВ, он создается в основном концентрацией K+ и зависит от Na+ и Cl-. Концентрация К+ внутри клетки составляет 150 ммоль/л, снаружи 4-5 ммоль/л. Концентрация Na+ внутри клетки составляет 14 ммоль/л, снаружи 140 ммоль/л. Отрицательный заряд внутри клетки создают анионы (глутамат, аспартат, фосфаты), для которых клеточная мембрана непроницаема. Потенциал покоя одинаков на всем протяжении волокна и не является специфической особенностью нервных клеток.

Раздражение нерва может приводит к возникновению потенциала действия.
Потенциал действия – это кратковременное изменение разности потенциала между наружной и внутренней мембраной в момент возбуждения. Потенциал действия зависит от концентрации Na+ и возникает по принципу «все или ничего».

Потенциал действия состоит из следующих стадий:

  • 1. Локальный ответ. Если при действии стимула происходит изменение потенциала покоя до пороговой величины -50мВ, то открываются натриевые каналы, имеющие более высокую пропускную способность, чем калиевые.
  • 2. Стадия деполяризации. Поток Na+ внутрь клетки приводит сначала к деполяризации мембраны до 0 мВ, а затем к инверсии полярности до +50мВ.
  • 3. Стадия реполяризации. Натриевые каналы закрываются, а калиевые открываются. Выход К+ из клетки восстанавливает мембранный потенциал до уровня потенциала покоя.

Ионные каналы открываются на непродолжительное время и после их закрытия натриевый насос восстанавливает исходное распределение ионов по сторонам мембраны.

Нервная ткань. Нервный импульс

В отличие от потенциала покоя, потенциал действия охватывает лишь очень небольшой участок аксона (в миелинизированных волокнах – от одного перехвата Ранвье до соседнего). Возникнув в одном участке аксона, потенциал действия вследствие диффузии ионов из этого участка вдоль волокна снижает потенциал покоя в соседнем участке и вызывает здесь то же развитие потенциала действия. Благодаря этому механизму потенциал действия распространяется по нервным волокнам и называется нервным импульсом.
В миелинизированном нервном волокне натриевые и калиевые ионные каналы расположены в немиелинизированных участках перехватов Ранвье, где мембрана аксона контактирует с межклеточной жидкостью. Вследствие этого нервный импульс перемещается «скачками»: ионы Na+ , поступающие внутрь аксона при открытии каналов в одном перехвате, диффундируют вдоль аксона по градиенту потенциалов до следующего перехвата, снижают здесь потенциал до пороговых значений и тем самым индуцируют потенциал действия. Благодаря такому устройству скорость поведения импульса в миелинизированном волокне в 5-6 раз больше, чем в немиелинизированных волокнах, где ионные каналы расположены равномерно по всей длине волокна и потенциал действия перемещается не скачками, а плавно.

Нервная ткань. Синапс: виды, строение и функции

Вальдаер в 1891г. сформулировал нейронную теорию, согласно которой нервная система состоит из множества отдельных клеток – нейронов. В ней оставался неясным вопрос: каков механизм коммуникации между единичными нейронами? Ч. Шеррингтон в 1887г. для объяснения механизма взаимодействия нейронов ввел термин «синапс» и «синаптическая передача».
Синапс – это морфофункциональное образование нервной системы, которое обеспечивает передачу сигнала с одного нейрона на другой нейрон или на эффекторную клетку.

Нервная ткань. Классификация синапсов
1. По локализации: центральные (ЦНС) и периферические (нервно-мышечные, нейросекреторные синапсы вегетативной НС).
2. По развитию в онтогенезе: стабильные (безусловный рефлекс) и динамические (условный рефлекс) синапсы.
3. По конечному эффекту: тормозные и возбуждающие.
4. По механизму передачи сигнала: электрические, химические и смешанные.

Химические синапсы делят:

  • а). по форме контакта: терминальные (колбообразное соединение) и переходящие (варикозное расширение аксона).
  • б). по природе медиатора: холинергические (медиатор ацетилхолин), адренергические (норадреналин), дофаминергические (дофамин), ГАМК-ергические (ГАМК), глициергические (глицин), глутаматергические (глутамат), аспартатергические (аспартат), пептидергические (пептиды), пуринергические (АТФ).

Электрические синапсы осуществляют передачу сигнала путем прямого прохождения потенциалов действия. Электрические синапсы сравнительно редки, их роль в ЦНС пока неясна. Передача сигнала между нейронами идет через щелевые контакты (щель около 2нм) с ионными мостиками-каналами. В противоположность химическому синапсу, сигнал через электрический синапс передается быстро и сразу в два направления.

Химический синапс осуществляет передачу сигнала с помощью специальных молекул – нейромедиаторов.
Нейромедиатор – это соединение, которое синтезируется и запасается в нейроне, высвобождается при проведении нервного импульса и специфически связывается постсинаптической мембраной, где оно активирует или ингибирует постсинаптическую клетку посредством деполяризации и гиперполяризации.

Химический синапс состоит

  • 1). из пресинаптического элемента, который ограничен пресинаптической мембраной. Пресинаптический элемент содержит митохондрии и особые пузырьки – синаптические везикулы, в которых хранится медиатор;
  • 2). постсинаптического элемента, который ограничен постсинаптической мембраной. Постсинаптическая мембрана содержит рецепторы к медиатору;
  • 3). внесинаптической области;
  • 4). синаптической щели (толщина 50 нм), заполненной базальной мембраной.

Свойства химического синапса

Синапс проводит импульс только в одном направлении. Сигнал через синапс передается с задержкой (0,2-0,5мс). Через синапс нервная клетка может оказывать возбуждающее или тормозное действие. Работа синапса может контролироваться по принципу отрицательной обратной связи (выделении первой порции медиатора тормозит выделение второй порции). На работу синапса влияют другие БАВ, лекарства и токсины. Синапс, при передачи сигнала, может его усилить, ослабить или передать без изменений. Синапсы подвержены процессу утомления. Образование синапсов весьма специфично (например, аксоны находят свои мишени и иннервируют их) и генетически запрограммировано в клетках. Синапс служит местом временных или постоянных изменений при хранении информации (обучение и память) или при поведенческих реакциях в ответ на внешние стимулы (адаптация и привыкание).

Среди рецепторов постсинаптической мембраны выделяют:
1). Рецепторы, связанные с ионными каналами (рецептор ГАМК);
3). Рецепторы, активирующие инозитолтрифосфатную систему;
5). Рецепторы, активирующие аденилатциклазную систему;

Нервная ткань. Стадии химической синаптической передачи

  • 1. Синтез медиатора
  • 2. Загрузка нейромедиатора в везикулу. В случае, когда 1 и 2 стадии протекают в теле нервной клетки, происходит аксоплазматический транспорт везикулы к нервному окончанию.
  • 3. Нервный импульс, приходящий от тела нейрона, вызывает деполяризацию пресинаптической мембраны и открытие кальциевых каналов.
  • 4. Кальций поступает в цитоплазму пресинаптического элемента и активирует цитоскелет, что вызывает слияние 100-200 везикул, содержащих медиатор, с пресинаптической мембраной и высвобождение медиатора в синаптическую щель.
  • 5. Медиатор дифундирует к постсинаптической мембране.
  • 6. Медиатор связывается со специфическим рецептором на постсинаптической мембране.
  • 7. Рецептор открывает натриевые каналы, что приводит к деполяризации постсинаптической мембраны и возникновению потенциала действия на клетке-мишени. Или рецептор открывает калиевые и хлорные каналы, что приводит к гиперполяризации постсинаптической мембраны и снижается возбудимость клетке-мишени. Или рецептор активирует аденилатциклазную систему вызывая метаболический эффект в клетке-мишени.
  • 8. Инактивация медиатора путем его ферментативной деградации, либо путем его обратного поглощения пресинаптической мембраной. Инактивация медиатора приводит к ограничению длительности пресинаптического сигнала.

Адренэргнические синапсы
Адренэргические синапсы используют в качестве медиаторов катехоламины – норадреналин (НА), дофамин. Адренэргические синапсы находятся в головном мозге и в СНС – в окончаниях постганглионарных волокон. Они возбуждают сердечную мышцу, тормозят ГМК ЖКТ, бронхов.
Катехоламины синтезируются в синапсе из тирозина, который образуется из фенилаланина, либо поступает с пищей.
Синтезируемые катехоламины запасаются в везикулах. Кроме катехоламинов, везикулы содержат АТФ (в меньших количествах АДФ и АМФ) и ионы кальция.
Под действием нервного импульса везикулы сливаются с пресинаптической мембраной, а катехоламины высвобождаются в синаптическую щель.
На поссинаптической мембране катехоламины связываются с рецепторами. Существует 4 вида рецепторов к норадреналину: α-1-АР, α-2-АР, β-1-АР, β-2-АР. Под действием норадреналина: α-1-АР (ГМК сосудов кожи, ЖКТ, нейроны головного мозга) и β-1-АР (миокард) деполяризует постсинаптической мембрану и возбуждает эффекторную клетку, α-2-АР пресинаптической мембраны тормозит выделение синапсом следующей порции НА, β-2-АР (ГМК сосудов скелетных мышц, бронхов, матки, коронарных сосудов) поляризует постсинаптической мембрану и тормозит эффекторную клетку.

Адренэргический синапс использует свой медиатор экономично: большая часть (80%) катехоламинов реабсорбируются из синаптической щели пресинаптической мембраной и снова упаковываются в везикулы.
Часть катехоламинов диффундирует в кровь, часть захватывается эффекторной клеткой и подвергается катаболизму – аминогруппа удаляется окислительным дезаминированием на митохондриальной мембране с участием моноаминооксидазы, а одна из гидроксильных групп ароматического кольца метилируется катехол-О-метилтрансферазой.

На работу адренергических синапсов влияют различные вещества:

  • Резерпин, октадин нарушают депонирование НА в везикулах;
  • Ипразид ингибирует МАО;
  • Пирогаллол ингибирует катехол-О-метилтрансферазу.
  • Эфедрин усиливает выделение НА;
  • Октадин, орнид ингибируют выделение НА;
  • Резерпин, кокаин ингибируют захват НА;

Болезнь Паркинсона
Болезнь Паркинсона – это прогрессирующее, часто фатальное нарушение центральной нервной системы, которое характеризуется ригидностью мышц, затруднениями движения и тремором. Больных узнают по застывшему выражению лица, и слегка согнутой окоченелой позе и замедленными движениями. У некоторых больных основным симптомом является дрожание конечностей.
Это заболевание связано с дегенеративным изменением в отделе ЦНС, ответственного за двигательный контроль. Обычно оно наступает во второй половине жизни, а его причины и факторы, провоцирующие болезнь, в основном неизвестны.
Заболевание поражает главным образом черное вещество и полосатое тело мозга – области богатые дофамином. У больных концентрация дофамина, продуктов его деградации и ферментов его биосинтеза снижены.
В качестве терапии таким больным назначают оральное применение ДОФА предшественника дофамина. Только небольшая доза введенного ДОФА достигает места своего действия, поэтому ежедневные дозы этого препарата достигают 2 –15г. Дозы могут быть значительно снижены, если вводить ДОФА вместе с ингибитором декарбоксилазы, блокирующим его периферическое разложение.

Нервная ткань. Холинэргические синапсы

Холинэргические синапсы – это группа различных синапсов использующих ацетилхолин в качестве нейромедиатора. Они играют важную роль в центральной нервной системе, участвуя в таких процессах, как поведение, сознание, эмоции, обучение и память.
Ацетилхолин – важный медиатор вегетативной нервной системы, он присутствует во всех ганглиях СНС и ПСНС, в постганглионарных нервных волокнах всех парасимпатических синапсов и некоторых симпатических. К группе холинэргических синапсов относятся нервно-мышечные соединения, образуемые моторными нейронами.
Синапсы преганглионарного типа стимулируются никотином и ацетилхолином, поэтому их называют никотиновыми холинэргическими синапсами. Синапсы постганглионарного типа стимулируются мускарином и ацетилхолином, поэтому их называют мускариновыми холинэргическими синапсами. Никотиновые рецепторы содержатся в нервно-мышечных синапсах скелетных мышц и в вегетативных ганглиях; мускариновые в гладких мышцах и мозге.

Никотиновый холинэргический синапс

Синтез ацетилхолина:

  • 1. Ацетил-СоА образуется в митохондриях из ПВК под действием пируватдегидрогеназы;
  • 2. Холин образуется главным образом в печени из фосфатидилхолина (не синтезируется в нервных окончаниях).
  • 3. Холин активно транспортируется в нервные клетки.
  • 4. В нервном окончании Ацетил-СоА соединяется с холином под действием холинацетилтрансфетазы с образованием ацетилхолина.
    (СН3)3N-CH2-CH2OH + CH3-CO-S-KoA → HS-KoA + (CH3)3N-CH2-CH2-O-CО-CH3

Нервная ткань. Синтез ацетилхолина

Ацетилхолин упаковывается в секреторные гранулы. В 1 везикуле содержится от 200 до 200 000 молекул ацетилхолина. Также в везикулах содержится АТФ (АТФ и ацетилхолин в соотношении 1:5). В нервном окончании содержится от 1000 до 10000 везикул.
Под действием нервного импульса 200-300 везикул сливаются с пресинаптической мембраной, а ацетилхолин высвобождается в синаптическую щель.
На поссинаптической мембране ацетилхолин связывается с никотинчувствительным холинорецептором. Никотинчувствительный холинорецептор интегральный мембранный белок молек. массой 250кДа, состоит из 5 субъедениц, имеет натриевый канал.
Под действием ацетилхолина, рецептор пропускает внутрь эффекторной клетки натрий, вызывая ее деполяризацию и возникновение на ее поверхности потенциала действия.
В синаптической щели ацетилхолин гидролизуется ацетилхолинэстеразой (4 субъеденицы) до ацетатата и холина.
(CH3)3N-CH2-CH2-O-CО-CH3 + Н2О → (СН3)3N-CH2-CH2OH + СН3СООН
Холин активно захватывается пресинаптической мембраной и идет снова на синтез ацетилхолина.

На работу никотиновых холинэргический синапсов влияют различные вещества:

  • Новокаин блокирует проведение потенциала действия по пресинаптическому элементу;
  • Дефицит кальция и избыток магния блокирует выделение ацетилхолина в синаптическую щель.
  • Токсин ботулизма блокирует высвобождение ацетилхолина (захват холина и синтез ацетилхолина).
  • Кураре, диплацин блокируют рецепторы.
  • Фосфорорганические соединения боевых отравляющих веществ (pорин, зоман, V-газы), инсектициды (дихлофос, хлорофос, карбофос) инактивируют ацетилхолинэстеразу.

Нервная ткань. Серотонинэргические синапсы

Серотонинэргические синапсы использую в качестве медиатора серотонин, они имеются в различных отделах головного мозга (мозговом стволе, варолиевом мосту, ядрах шва).
Серотонин образуется из триптофана путем гидроксилирования в 5 положении и последующего декарбоксилирования.
Затем серотонин упаковывается в секреторные гранулы, и под действием потенциала действия высвобождается.
Рецепторы серотонина бывают 2 типов М и Д, которые имеют не менее 15 под­типов.
Рецепторы к серотонину действуют через аденилатциклазную систему, инозитолтрифосфатную систему и ионные каналы.

Инактивация серотонина:

  • при его окислительном дезаминирования МАО.
  • при N-ацетилировании с образованием N-ацетилсеротонин. При О-метилирование N-ацетилсеротонина приводит к образованию мелатонина – гормона шишковидной железы.

Серотонин играет важную роль в регуляции эмоционального поведения, двигательной активности, пищевого поведения, сна, терморегуляции, участвует в контроле нейроэндокринных систем.

Нервная ткань. Аминокислотные медиаторы

Аминокислотные медиаторы подразделяются на две группы:

  • возбуждающие кислые (глутамат и аспартат)
  • ингибиторные нейтральные (ГАМК, глицин, β-аланин и таурин).

ГАМК

ГАМК ингибиторный медиатор. Он содержится в сером веществе головного мозга, в клетках Пуркинье мозжечка, многих ингибиторных промежуточных нейронов, например, полосатого тела, спинного мозга и коры.

ГАМК образуется и разрушается в ГАМК-шунте ЦТК.

Ингибирование заключается в том, что он открывает хлорные каналы, вызывает гиперполяризацию и тормозит возбудимость постсинаптической мембраны эффекторной клетки.
Если ингибирующее действие ГАМК-эргических нейронов снимается, то это приводит к неконтролируемой активности связанных с этим медиатором нервных связей. Антагонисты ГАМК, например пикротоксин и бикукуллин, являются, следовательно, мощными конвульсантами.
Вещества, усиливающие ингибиторный эффект ГАМК, являются релаксантами и транквилизаторами.

На работу ГАМК-реактивных синапсов влияют различные вещества:

  • Производные гидразина ингибируют синтез ГАМК.
  • Антогонисты ГАМК: бициклофосфаты, норборнан.
  • Пресинапсические блокаторы высвобождения ГАМК: тетанотоксин.

Глицин
Глицин – основной ингибиторный медиатор спинного мозга и ствола головного мозга. Он открывает хлорные каналы, вызывает гиперполяризацию и тормозит возбудимость постсинаптической мембраны.

Глутамат
Глутамат – основной возбуждающий медиатор ЦНС. Он представлен в высокой концентрации в нервной ткани (10 мМ) (причем в нейронах выше, чем в глии). Непосредственный источник глутамата в мозговой ткани – восстановительное аминирование и переаминирования α-кетоглутаровой кислоты.
Выделено пять рецепторов глутамата.
NMDA, АМРА и каинатные рецепторы связаны с Са2+-каналами. Под действием глутамата, рецепторы открывают Са2+-каналы и запускают Са2+ из межклеточного пространства в в нейроплазму.
ACPD – рецепторы активируют инозитолтрифосфатную систему. Под действием глутамата они выпускают Са2+ из ЭПС в в нейроплазму.
Активацие L-AP4-рецепторов приводит к усилению гидролиза цГМФ и блокаде входящих ионных токов.
Глутамат играет важную роль в осуществлении пластичности синапсов и эксайтотоксичности, участвует в развитии долговременной потенциации – процесса, который лежит в основе некоторых форм обучения.

Нервная ткань. Энкефалины и другие нейропептиды

Эндорфин, динорфин и энкефалины – нейромедиаторы пептидной природы, которые находятся в спинном мозге (области ответственной за проведение болевых сигналов), в малых промежуточных нейронах. Высокие концентрации энкефалинов присутствуют в лимбической системы (в части, которая участвует в регуляции эмоций).
Среди энкефалинов выделены Met- и Leu-энкефалин.
Были найдены три предшественника: проопиомеланокортин, проэнкефалин и продинорфин.

Проопиомеланокортин содержит по 1 копии АКТГ, β-липотропина, β-эндорфина, Met-энкефалина. β-липотропин, полипептид гипофиза, является предшественником Met-энкефалина.

Продинорфин, полипептид гипоталамуса, содержит три копии Leu-энкефалина и по одной β-неодинорфина и динорфина. Динорфин, полипептид гипофиза, является предшественником Leu-энкефалина.
Проэнкефалин содержит 4 копии Met-энкефалина, одну – Leu-энкефалина.
Эндорфин, динорфин и энкефалины действуют на опиоидные рецепторы. Эти рецепторы также чувствительны к морфину и его производным. Морфин – алкалоид, выделенный из млечного сока незрелых коробочек мака.

Существуют три типа опиатных рецепторов δ, μ и χ.

  • χ-рецепторы связывают только динорфин, они находятся главным образом в спинном мозге, где участвуют в регуляции передачи болевых сигналов.
  • С δ- и μ-рецепторами связываются энкефалины.

Опиаты обладают как анальгетическим, так и эйфорическим действием. Опиаты ингибируют высвобождение вещества Р – соединения, которое, выполняет роль нейромедиатора нервного болевого пути.
Особенно большая плотность рецепторов обнаружена в лимбической системе – эволюционно самом древнем отделе, который отвечает за эмоциональное возбуждение и в котором локализованы эйфорические и эмоциональные компоненты болеутоляющего действия опиатов.

Вещество Р
Вещество Р – нейромедиатор пресинаптических окончаний С-волокон первичных сенсорных нейронов, образующих синапсы на сенсорных нейронов второго порядка в задних рогах спинного мозга. Он участвует в восприятии болевых сигналов.

Нервная ткань. ХИМИЧЕСКИЕ ОСНОВЫ БОЛИ

В основе любой боли лежит раздражение болевых или полимодальных рецепторов, т.е. боль – прежде всего ощущение.
Но, поскольку это ощущение влечет за собой стимуляцию различных отделов нервной и эндокринной системы, боль как явление у человека включает эмоциональный, вегетативный, двигательный и поведенческий компоненты, а значит, представляет собой основанное на болевом ощущении психофизиологическое состояние организма. В шестидесятые годы нашего столетия было обнаружено, что два вида болевой чувствительности имеют различный проводниково-рецепторный аппарат и центральные адреса.

Нервная ткань. Болевые рецепторы
Поверхностные ткани снабжены нервными окончаниями различных афферентных волокон. Наиболее толстые, миелинизированные Аβ-волокна обладают тактильной чувствительностью. Они возбуждаются при неболезненных прикосновениях и при перемещении. Эти окончания могут служить как полимодальные неспецифические болевые рецепторы только при патологических условиях, например, вследствие возрастания их чувствительности (сенсибилизации) медиаторами воспаления. Слабое раздражение полимодальных неспецифических тактильных рецепторов приводит к чувству зуда. Порог их возбудимости понижают гистамин и серотонин.

Специфическими первичными болевыми рецепторами (нонирецепторами) служат два других типа нервных окончаний – тонкие миелинизированные Аδ-терминали и тонкие немиелинизированные С-волокна, филогенетически более примитивны. Оба эти типа терминалей представлены и в поверхностных тканях, и во внутренних органах. Ноцирецепторы дают чувство боли в ответ на самые разные интенсивные стимулы – механическое воздействие, термический сигнал и т.д. Ишемия всегда вызывает боль поскольку провоцирует ацидоз.

Мышечный спазм может вызвать раздражение болевых окончаний из-за относительной гипоксии и ишемии, которые он вызывает, а также вследствие прямого механического смещения ноцирецепторов. По С-волокнам проводится со скоростью 0,5-2 м/с медленная, протопатическая боль, а по миелинизированным, быстропроводящим Аδ-волокнам, обеспечивающим скорость проведения от 6 до 30 м/с, – эпикритическая боль. Кроме кожи, где, по данным А.Г.Бухтиярова, насчитывается не менее 100-200 болевых рецепторов на 1 см, слизистых и роговицы, болевыми рецепторами обоих типов обильно снабжены надкостница, а так же сосудистые стенки, суставы, мозговые синусы и париетальные листки серозных оболочек. В висцеральных листках этих оболочек и внутренних органов болевых рецепторов гораздо меньше.

Боли при нейрохирургических операциях максимальны в момент рассечения мозговых оболочек, в то же время кора больших полушарий обладает очень незначительной и строго локальной болевой чувствительностью. Вообще такой распространенный симптом как головная боль, практически всегда связан с раздражением болевых рецепторов вне самой ткани мозга.

Экстракраниальной причиной головной боли могут быть процессы локализованные в синусах костей головы, спазм цилиарной и других глазных мышц, тоническое напряжение мышц шеи и скальпа. Интракраниальные причины головной боли – это в первую очередь раздражение ноцирецепторов мозговых оболочек. При менингите сильнейшие головные боли охватывают всю голову. Весьма серьезную головную боль вызывает раздражение ноцирецепторов в мозговых синусах и артериях, особенно в бассейне средней мозговой артерии.

Даже незначительные потери цереброспинальной жидкости могут спровоцировать головную боль, особенно, в вертикальном положении тела, поскольку плавучесть мозга меняется, и при уменьшении гидравлической подушки раздражаются болевые рецепторы его оболочек. С другой стороны, избыток цереброспинальной жидкости и нарушение ее оттока при гидроцефалии, отек головного мозга, его набухание при внутриклеточной гипергидратации, полнокровие сосудов мозговых оболочек, вызванное цитокинами при инфекциях, локальные объемные процессы – также провоцируют головную боль, т.к. при этом увеличивается механическое воздействие на болевые рецепторы окружающих собственно мозг структур.

Болевые рецепторы претендуют на уникальное положение в человеческом теле. Это единственный тип чувствительных рецепторов, которые не подлежат какой бы то ни было адаптации или десенсибилизации под воздействием длящегося или повторяющегося сигнала. Ноцирецепторы при этом не превышают порог своей возбудимости, подобно, например, холодовым сенсорам. Следовательно, рецептор не «привыкает» к боли. Более того, в ноцирецептивных нервных окончаниях имеет место прямо противоположное явление – сенсибилизация болевых рецепторов сигналом. При воспалении, повреждениях ткани и при повторных и длительных болевых раздражителях порог болевой возбудимости ноцирецепторов снижается. Называя болевые сенсоры рецепторами необходимо подчеркнуть, что применение к ним этого термина носит условный характер – ведь это свободные нервные окончания, лишенные каких бы то ни было специальных рецепторных приспособлений.

Нейрохимические механизмы раздражения ноцирецепторов хорошо изучены. Их основным стимулятором является брадикинин. В ответ на повреждение клеток близ ноцирецептора освобождаются этот медиатор, а так же простагландины, лейкотриены, иона калия и водорода. Простагландины и лейкотриены сенсибилизируют ноцирецепторы к кининам, а калий и водород облегчает их деполяризацию и возникновения в них электрического афферентного болевого сигнала. Возбуждение распространяется не только афферентно, но и антидромно, в соседние ветви терминали. Там оно приводит к секреции вещества Р.

Этот нейропептид вызывает вокруг терминали паракринным путем гиперемию, отек, дегрануляцию тучных клеток и тромбоцитов. Освобождаемые при этом гистамин, серотонин, простагландины сенсибилизируют ноцирецепторы, а химаза и триптаза мастоцитов усиливают продукцию их прямого агониста – брадикинина. Следовательно, при повреждении ноцирецепторы действуют как сенсоры, и как паракринные провокаторы воспаления. Вблизи ноцирецепторов, как правило, располагаются симпатические норадренергические постганглионарные нервные окончания, которые способны модулировать чувствительность ноцирецепторов.

При травмах периферических нервов нередко развивается так называемая каузалгия – патологически повышенная чувствительность ноцирецепторов в области, иннервируемой поврежденным нервом, сопровождаемая жгучими болямии доже признаками воспаления без видимых местных повреждений. Механизм каузалгии связан с гипералгизирующим действием симпатических нервов, в частности, выделяемого ими норадненалина, на состояние болевых рецепторов. Возможно, при этом происходит секреция вещества Р и других нейропептидов симпатическими нервами, что и обуславливает воспалительные симптомы.

Нервная ткань. Система эндогенной модуляции боли.

В контроле возбудимости нейронов, передающих в ЦНС болевые импульсы, принимают участие в основном опиатэргические, серотонинэргические и норадренэргические воздействия. Анатомически, структурами, где сосредоточены элементы модулирующей систеиы являются таламус, серое вещество в окружности сильвиева водопровода, ядра шва, гелеподобное вещество спинного мозга и nucleus traсtus solitarii.
Входные сигналы от лобной коры и гипоталамуса могут активировать энкефалинэргические нейроны вокруг водопровода Сильвия, в среднем мозге и мосте. От них возбуждение нисходит на большое ядро шва, пронизывающее нижнюю часть моста и верхнюю – продолговатого мозга. Нейротрансмиттером в нейронах этого ядра является серотонин. Антиболевой центральный эффект серотонина связан с его антидепрессивным и противотревожным действием.

Ядро шва и близкие к нему роствентрикулярные нейроны продолговатого мозга проводят антиноцирецептивные сигналы в задние рога спинного мозга, где их воспринимают энкефалинэргические нейроны substantia grisea. Энкефалин, вырабатываемый этими тормозными нейронами, осуществляет пресинаптическое ингибирование на болевых афферентных волокнах. Т.о., энкефалин и серотонин передают друг другу эстафетную палочку противоболевой сигнализации. Именно поэтому, морфин и его аналоги, а также агонисты и блокаторы захвата серотонина заняли важное место в анестезиологии. Блокируются не только оба типа болевой чувствительности. Торможение распространяется на защитные болевые спинальные рефлексы, осуществляется оно и на супраспинальном уровне. Опиатэргические системы тормозят стрессорную активности в гипоталамусе (здесь наиболее важен β-эндорфин), ингибируют активность центров гнева, активируют центр наград, вызывают через лимбическую систему изменение эмоционального фона, подавляя отрицательные болевые эмоциональные корреляты и понижают активирующее действие боли на все отделы ЦНС.

Эндогенные опиоиды через спинномозговую жидкость могут попасть в системный кровоток для осуществления эндокринной регуляции, подавляющей системные реакции на боль.
Все способы распространения нейропептидов составляют так называемый трансвентрикулярный путь гипоталамической регуляции.
Депрессии, сопровождаемые уменьшение продукции опиатов и серотонина, часто характеризуются обострением болевой чувствительности. Энкефалины и холецистокинин являются пептидными ко-трансмиттерами в дофаминэргических нейронах. Хорошо известно, что дофаминэргинческая гиперактивность в лимбической системе является одной из патогенетических особенностей шизофрении.

Нервная ткань. Привыкание к лекарствам и лекарственная зависимость.

Молекулярная модель.
Применение опиатов в медицине ограничено из-за того, что их болеутоляющее действие со временем уменьшается, что делает необходимым постоянное увеличение доз. Это явление известно как привыкание к лекарствам, или толерантность. Привыкание, как и лекарственную зависимость нельзя преодолеть, даже если постоянно разрабатывать все новые и новые опиаты. Лекарственная зависимость (наркомания) имеет не психическую природу, а вполне реальную физиологическую. Изучение гибридомных клеток нейробластомы позволило сделать, правда весьма осторожные предположения о возможном молекулярном механизме этого заболевания: здесь, как и in vivo, опиаты в том числе, эндогенные ингибируют аденилатциклазу клеточной мембраны и, таким образом, снижают концентрацию цАМФ. Этот эффект, однако, носит временный характер, так как клетка компенсирует ингибированный фермент синтезом его дополнительных порций.

Более высокая концентрация фермента требует более высокой концентрации опиата для достижения такого же ингибиторного действия. Это точно соответствует определению привыкание. Если затем ингибитор удалить отмывкой, то концентрация цАМФ достигает значительно более высокого уровня, чем в норме, поскольку в клетке присутствует значительно больше нормального количества циклазы. Из-за множественности действия этого фермента на клеточный метаболизм его избыток сдвигает метаболический баланс и происходит нарушение деятельность клетки, подобно синдрому абстиненции (лишения) у человека, зависимого от лекарства. Клетка теперь нуждается в опиатах в качестве ингибитора и становится лекарственно зависимой. В этой серии экспериментов было показано, что число и сродство рецепторов не менялись, и, следовательно, только циклаза в первую очередь гипертрофировалось в ответ на ингибирование.

 

НЕЙРОХИМИЧЕСКИЕ МЕХАНИЗМЫ ПЛАСТИЧНОСТИ И ПАМЯТИ.

После открытия способа кодирования генетической информации в ДНК (генетической памяти) и успешного изучения иммунологической памяти были предприняты попытки отыскать молекулярные основы нейронной памяти – возможного нервного субстрата энграммы.
Как показали эксперименты, существуют кратковременная память с относительно слабой способностью к накоплению и долговременная память, причем накопленная информация может переходить из кратковременной формы запоминания в более длительную. Считается, что кратковременная форма памяти представлена реверберирующими контурами, возникающими в коре больших полушарий и быстро исчезающими. Долговременная память сохраняется в течение столь длительного времени, что ее можно связывать с появлением каких-то устойчивых изменений в химизме нейронов или даже в физических связях.
Вначале интенсивно исследовался вопрос, не приводит ли научение к изменениям состава рибонуклеиновых кислот (РНК) в нервных и глиальных клетках. Действительно были обнаружены изменения в последовательностях нуклеотидов, однако они оказались в значительно степени неспецифичными последствиями общей активности животного и экспериментального стресса. Что же касается опытов с каннибализмом, в которых «необученным» животным скармливались «обученные» (или ЦНС последних), воспроизводимости их результатов не удалось добиться ни у рыб, ни у млекопитающих .

В настоящее время из множества гипотез возникновения памяти наиболее распространенные две:

  • Синапсо-мембранная теория памяти.
    Память представляет собой комбинацию явлений облегчения и торможения нервной передачи в специфических синапсах.
    Циклические нуклеотиды, высвобождающиеся в клетках под влиянием возбуждения соответствующих рецепторов, регулируют активность множества внутриклеточных ферментов, что ведет к изменению не только свойств синаптических мембран, но и транскрипции генов и многих других процессов. Таким образом, прохождение импульса через синапс должно оказывать продолжительное влияние на свойства этого синапса.
  • Химическая основа памяти – молекулярный код.
    Другая гипотеза рассматривает в качестве химической основы обучения молекулярный код. Действительно, из мозга крыс, приученных избегать темноты, был выделен пептид, состоящий из 15 аминокислотных остатков, связанный с указанным поведенческим навыком: при введении пептида в мозг необученных крыс они также начинали избегать темноты. Этот и многие другие примеры позволили предположить о существовании в мозге специфических переносчиков приобретенных навыков поведения.
    Хотя данную гипотезу трудно принять, все же, существование пептидных гормонов и либеринов, синтезируемых в нейронах заставляет внимательно отнестись к предположению о связи долговременной памяти с синтезом специфических аминокислотных последовательностей в определенных нейронах.

 Ноотропные препараты

Получение новых сведений о природе нарушений памяти, вовлекающих нейробиохимические изменения на различных уровнях — нейрональном, синаптическом, мембранном, кле­точном, молекулярном, позволило подойти к поиску средств коррекции этих нару­шений, в результате чего получен целый ряд веществ, которые обладают значительной ноотропной активностью и оригинальными механизмами действия.

Ноотропные препараты (НП) составляют особую группу нейропсихотропных препаратов, специфический эффект которых определяется способностью улучшать процессы обучения и памяти, когнитивные функции как у здоровых лиц, так и, в особенности, нарушенные при различных заболеваниях. В зарубежной литературе, как синоним НП, иногда используется термин «усилитель когнитивных функций».

Общая схема действия НП прежде всего связана с изменением метаболиче­ских, биоэнергетических процессов в нервной клетке, повышением скорости оборота информационных мак­ромолекул и активацией синтеза белка, что отражено во многих последних обзорах.
Так, рацетамы вызывают усиление синтеза фосфолипидов и белка, необходимых для процессов памяти, активируют аденилаткиназу, катализирующую превращение АДФ в АТФ, усиливают утилизацию глюкозы в мозге, умень­шает активность Nа/К.-АТФ-азы, усиливают актив­ность синаптосомальной фосфолипазы А, угнетают кортикальный выброс L-пролина, амнестической ами­нокислоты, повышают интенсивность включения ме­ченого лецитина в белок и уредина в РНК, а также ин­корпорацию 32Р в фосфолипиды мозга.

Можно определить не­сколько перспективных направлений создания НП но­вого поколения.

В настоящее время ни у кого не вызывает сомне­ний, что глутаматергическая система играет важную, если не ведущую роль, в осуществлении высших интегративных функций мозга. Наряду с данными об участии NMDA рецепторного комплекса в базис­ных механизмах синаптической пластичности, процес­сах обучения и памяти накапливаются доказательства и о вовлечении этой системы в патогенез различных заболеваний, сопровождающихся нарушениями памя­ти. В частности, показано, что у больных, страдающих деменциями, в том числе и болезнью Альцгеймера, нарушается чувствительность и связы­вающая способность NMDA рецепторов в мозге, на­блюдается атрофия глугаматергических кортикальных нейронов и ослабление синаптической пластичности.

Для процессов памяти представляется важным специфический структурный участок NMDA рецептора — глици­новый сайт, активация которого лежит в основе дли­тельной потенциации нейронов гиппокампа, а, следо­вательно и усиления синаптической передачи. Такие агонисты глицинового сайта как глицин и Д-циклосерин оказывают улучшающее влияние на память как в эксперименте, так и у человека.

  •  Процессы памяти тесно связаны с холинергической системой и дефицит холинергической передачи занимает одну из ключевых позиций в нейропатологии сенильной деменции, в том числе болезни Альцгеймера. Для лечения этих заболе­ваний широко используются препараты с холинергическим механизмом действия, которые воздействуют на три уровня (усиление синтеза ацетилхолина, воз­действие на рецепторы и ингибирование ацетилхолинэстеразы).
    В последние годы внимание исследователей при­влекает фактор роста нервов (ФРН), нейропептид, со­держащий 118 аминокислот, рецепторы которого нахо­дятся на холинергических терминалях в коре и гиппокампе, и на холинергических нейронах сомы. Имеются данные о том, что интрацеребральное введе­ние ФРН предотвращает гибель холинергических ней­ронов, а также восстанавливает нарушение простран­ственной памяти у крыс с травмой переднего мозга. Введение ФРН в мозг больных болезнью Альцгеймера увеличивает связывание никотина в коре мозга и уси­ливает церебральный кровоток, что свидетельствует о способности ФРН противодействовать холинергическим дефицитам при этом заболевании.
  • Согласно синапсо-мембранной гипотезе памя­ти, механизм ее формирования определяется структур­но-функциональными изменениями в мембране, кото­рые включают стабилизацию конформационных синаптических мембранных протеиновых макромоле­кул, в результате чего происходит активация синапти­ческой передачи. С другой стороны, вызываемые сво­бодными радикалами поражения в мембране играют важную роль в старении и в патогенезе различных заболеваний, в том числе деменции. На ос­новании этого, вещества, обладающие мембранопротекторным действием, способные противостоять дей­ствию свободных радикалов, рассматриваются как перспективные лечебные средства. К числу НП с антиоксидантным механизмом действия относятся: меклофеноксат, фосфотидилсерин — природный компонент фосфолипидной мембраны, которые доказали свою эффективность в клинических исследованиях с приме­нением двойного слепого контроля у больных с нару­шением памяти
  • Наиболее интенсивные ис­следования по поиску новых НП развернулись на ос­нове нейропептидов. Показано, что регуляторные нейропептиды, такие как АКТГ и его фрагменты, соматостатин, вазопрессин, тиролиберин, субстанция Р и др. вовлекаются в процессы обучения и памяти. В связи с этим делаются попытки создания синтетиче­ских аналогов этих пептидов, которые позволили бы избежать нежелательных эндокринных эффектов и сделать молекулу более устойчивой к разрушению при введении вещества внутрь.
  • Одним из путей усиления пептидергической нейропередачи является ингибирование некоторых пептидаз мозга, в частно­сти, пролилэндопептидазы (ПЭП), которая играет су­щественную роль в метаболизме пролинсодержащих нейропептидов, таких как субстанция Р, аргинин, вазо­прессин и тиролиберин. Все эти нейропептиды облада­ют способностью усиливать мнестические процессы и их уровни в мозге значительно уменьшены у больных с нарушением памяти. Показано также, что ПЭП участвует в генера­ции Р-амилоида в мозге пациентов с болезнью Альцгеймера и выявлен защитный эффект вещества Р в отношении нейрогенераторного эффекта Р-амилоида. В связи с этим предпринимаются попытки создания НП на основе ингибиторов ПЭП

Таким образом, представленные данные свидетель­ствуют о том, насколько интенсивно в последние годы проводятся исследования, связанные с поиском и изу­чением механизма действия, НП.

СОН. БИОХИМИЧЕСКИЕ ТЕОРИИ СНА

Обмен веществ в головном мозге в состоянии бодрствования и сна различаются.
Определяется повышение концентрации молочной кислоты, что свидетельствует об активации анаэробных процессов и снижении интенсивности цТК. Помимо глюкозы, в качестве субстрата начинают использоваться кетоновые тела крови.
Потребление кислорода мозговой тканью зависит от стадии сна. В фазу медленного сна она понижена на 30% от дневной нормы, а в БДГ-фазу -возрастает на 12%. Падает интенсивность процессов ПОЛ. Снижается уровень аммиака в ткани. Наблюдается активация синтетических процессов обмена нуклеиновых кислот, белков и полипептидов.

Переход от бодрствования ко сну предполагает два возможных пути:

  • Прежде всего, не исключено, что механизмы, поддерживающие бодрствующее состояние, постепенно «утомляются». В соответствии с такой точкой зрения, сон – это пассивное явление, следствие снижения уровня бодрствования.
  • Сон- это активное торможение обеспечивающих бодрствование механизмов. В этом случае нервные процессы, вызывающие сон, развиваются еще в бодрствующем состоянии, и в конечном итоге перекрывают бодрствование.

До последнего времени господствовала пассивная теория засыпания, однако окончательно вопрос не решен.

С точки зрения нейрохимии интересны две теории механизма сна:

Серотонинэргическая теория сна.
В верхних отделах ствола мозга есть две области – ядра шва и голубое пятно – у нейронов которых такие же обширные проекции, как и у нейронов ретикулярной формации, т.е. достигающие многих областей ЦНС. Медиатором в клетках ядер шва служит серотонин (5-НТ), а голубого пятна – норадренилин.

В конце 1960-х гг. на основании ряда фактов М. Жуве пришел к выводу, что две эти нейронные системы, особенно ядра шва, играют важнейшую роль в возникновении сна. Разрушение ядер шва у кошки приводит к полной бессоннице в течение нескольких дней; но за несколько следующих недель сон нормализуется. Частичная бессонница может быть также вызвана подавлением синтеза 5-НТ n-хлорфенилаланином. Ее можно устранить 5-гидрокситриптофаном, предшественником серотонина (последний не проникает через гематоэнцефалический барьер). Двустороннее разрушение голубого пятна приводит к полному исчезновению БДГ-фаз, не влияя на медленноволновой сон.
Все перечисленное позволило предположить, что выделение серотонина приводит к активному торможению структур, отвечающих за бодрствование, т.е. вызывает сон. При этом всегда возникает его медленноволновая фаза. Позднее наступает БДГ- сон, для которого необходимо голубое пятно (его активность обуславливает общее падение мышечного тонуса и быстрые движения глаз).
К сожалению, в своем первоначальном виде эта теория не верна. Сейчас доказано, что нейроны шва наиболее активны и выделяют максимум серотонина не во время сна, а при бодрствовании.

В последние двадцать лет в связи с прогрессом нейрохимии, особенно в изучении нейропептидов, привлекла к себе внимание теория эндогенных факторах сна.

Известно, что бодрствовавший в течение длительного времени человек ощущает непреодолимую потребность во сне. Соответственно, пытались выяснить, не обусловлены ли усталость и сон, периодическим накоплением, истощением или выработкой особых циркулирующих в крови метаболитов (факторов сна); тогда во время сна за счет удаления или обменных процессов должны восстанавливаться их концентрации, характерные для бодрствования.
Были сделаны попытки обнаружить особые вещества либо после длительного лишения сна, либо у спящего человека. Первый из подходов основан на том, что фактор(ы) сна во время бодрствования накапливаются, а второй – на гипотезе, согласно которой они образуются или выделяются во сне.

Оба подхода дали определенные результаты. Так при проверке первой гипотезы из мочи и спинномозговой жидкости человека и животных был выделен небольшой глюкопептид – фактор S, вызывающий медленноволновой сон при введении другим животным. Существует, по-видимому, и фактор сна с БДГ. Второй подход привел к открытию индуцирующего глубокий сон нонапептида (в настоящее время он уже синтезирован), так называемого пептида дельта-сна (DSIP). Однако пока не известно, играют ли эти и многие другие «вещества сна», обнаруженные при проверке обоих гипотез, какую-либо роль в физиологической регуляции.

Категории
Рекомендации
Подсказка
Нажмите Ctrl + F, чтобы найти фразу в тексте
Помощь проекту
А знаете ли вы, что нажав сочетание клавиш Ctrl+F - можно воспользоваться поиском по сайту?
X
Copyrights © 2015: FARMF.RU - тесты, лекции, обзоры
Яндекс.Метрика
Рейтинг@Mail.ru