Анализ катионов. Классификация катионов на группы

Анализ катионов

При систематическом анализе принято деление катионов и анионов на аналитические группы. Наиболее удобная, применяемая и в настоящее время классификация катионов, разработана Н.А. Меншуткиным в 1871 г. Все существующие ныне классификации предусматривают разделение катионов на 5 или 6 аналитических групп на основании следующих их свойств:

1.На различии растворимости хлоридов, карбонатов, сульфатов или гидроксидов.

2. На амфотерных свойствах некоторых гидроксидов.

3. На способности ряда гидроксидов образовывать комплексные аммиакаты.

Классификация катионов на аналитические группы

Катионы Групповая

характеристика

Групповой

реактив

Получаемые

соединения

1 К+, Na+, NH4+,Mg2+ Соли и гидроксиды растворимы в воде
2 Ca2+, Ba2+, Sr2+ Карбонаты не растворимы в воде, но растворимы в кислотах. Сульфаты не растворимы в воде и в кислотах. (NН4)2СО3 2н.

раствор

СаСO3↓, ВаСОз↓, SrO3

Аморфные осадки белого цвета.

3 Al3+, Fe2+,Fe3+, Mn2+, Zn2+, Cr2+. Сульфиды не растворимы в воде, но растворимы в кислотах. Гидроксиды не -растворимы в воде, но могут растворятся в кислотах (NH4)2S 6н.

раствор

FeS↓, Fе2S3↓- черные, MnS↓-розоватый, ZnS↓- белый, Аl(ОН)3↓- белый, Сr(ОН)3↓-серо-зеленый.
4 Ag+, Pb2+, Hg22+ Хлориды не растворимы в воде. НСl 2н. раствор AgCl↓, PbC12↓, Hg2C12↓- осадки белого цвета.
5 Сu2+, Co2+, Ni2+,Cd2+, Bi3+ Гидроксиды и основные соли не растворимы в воде, но растворимы в избытке аммиака. NH4ОH 2н. раствор в избытке Раствор Сu(NН3)42+– синий, Со(NН3)42+– грязно-желтый, Ni(NН3)42+ – синий, Сd(NН3)42+ – бесцветный, Вi(0Н)2Сl↓ – белый.
6 Sn2+, Sn4+, Sb3+,

Sb5+, (Аs3+, As5+)

Гидроксиды амфотерны. Сульфиды нерастворимы в воде, но растворимы в cульфидах Na, К и аммония. NaOH, КОН, NH40H, 3н. растворы H4Sn04↓, Sn(ОН)2↓, НSb02↓, НSbО3↓- белые осадки, растворимые в избытке щелочей.

Первая аналитическая группа катионов: К+, Na+, NН4+, Mg2+

Почти все соли калия, натрия, аммония и большинство солей магния хорошо растворимы в воде. Поэтому группового реактива, осаждающего все четыре катиона, нет.

Калий и натрий относятся к 1 группе периодической системы элементов и образуют сильные щелочи. Гидроксид аммония является слабым основанием, но катион аммония близок по свойствам к катиону калия и образует несколько аналогичных малорастворимых солей. Соли аммония разлагаются при нагревании и могут быть удалены прокаливанием. Гидроксид магния – слабое основание, плохо растворимое в воде. Труднорастворимы также фосфат магния и карбонат. Гидроксокарбонат магния растворяется в избытке солей аммония и при действии карбонатом аммония в присутствии хлорида аммония в осадок не выпадает. Поэтому при систематическом анализе ион магния остается в растворе с катионами 1 группы. По этой причине он и отнесен к этой группе.

При систематическом анализе катионы калия, натрия и магния обнаруживают в последнюю очередь, так как катионы других групп мешают их обнаружению и должны быть удалены. В водных растворах катионы 1 группы бесцветны, образуемые ими соли имеют окраску только в тех случаях, когда в их состав входят окрашенные анионы, например: перманганат, хромат или дихромат -ионы.

Катионы 1 аналитической группы содержатся в почвах как в подвижном, доступном для усвоения растениями состоянии, так и в связанном. Они вносятся в почву в виде минеральных удобрений. Калий в виде -калийной селитры, сульфата, хлорида и других солей. Натрий – составная часть чилийской селитры (NаNО3). Магний входит в состав доломита СаСОЗ•МgСО3 . Ион аммония содержится в аммонийной селитре, сульфате и хлориде аммония, в аммофосе NH4H24 и диаммофосе (NН4)2HPО4.

Ионы калия, магния, аммония необходимы для минерального питания растений. Большое содержание солей натрия указывает на засоленность почв.

Анализ водных вытяжек из почвы на наличие этих катионов используют для определения пригодности почв для возделывания различных культур.

Оценка качества природных вод включает пробы на присутствие ионов аммония. Наличие в воде аммиака и солей аммония служит признаком загрязненности, так как эти соединения образуются при гниении белков.

Продукты детского и диетического питания также подвергаются обязательному исследованию на содержание натрия, калия и магния.

Вторая аналитическая группа катионов: Ca2+, Ba2+, Sr2+

Катионы 2 группы, в отличии от катионов 1 группы, образуют малорастворимые в воде карбонаты. Поэтому их осаждают действием карбоната аммония, который является групповым реактивом.

Осадки карбонатов кальция, бария и стронция могут быть получены и при действии на раствор карбонатами натрия и калия. Но при систематическом анализе пользоваться этими реактивами невозможно, так как вместе с ними в исследуемый раствор вводятся ионы Na+ и К+. Использование карбоната аммония оправдано тем, что ион NH4+ можно предварительно открыть дробным методом.

Из солей кальция, бария и стронция также не растворимы сульфаты, фосфаты и оксалаты. Однако осаждение серной кислотой проводится редко, так как сульфаты не растворимы в сильных кислотах и щелочах и с большим трудом снова переводятся в раствор. Осаждение фосфорной и щавелевой кислотой не проводят по той причине, что присутствие в растворе фосфат – и оксалат -ионов усложняет анализ.

Сульфиды этих элементов, в отличие от катионов 3,4 и 5 групп, хорошо растворимы в воде.

В водных растворах катионы 2 группы бесцветны.

Соли кальция используют для улучшения почв: в сильно кислые почвы для нейтрализации вводят известняк СаСО3; а в солонцеватые – гипс CaS04•2H2O. Кальций входит в состав минеральных удобрений: фосфоритной муки Са3(РО4)2, суперфосфата Са(Н2РО4)2 + CaS04, кальциевой селитры Са(НСО3)2 и т.д.

Растворимый гидрокарбонат кальция Са(НСО3)2 находится в природных водах, сообщая им временную жесткость. Арсенит и арсенат кальция используют как сельскохозяйственные яды.

Ионы бария ядовиты. Карбонат и хлорид бария используют в сельском хозяйстве как яды. Поэтому обнаружение ионов бария проводят при распознавании ядохимикатов.

Радиоактивный изотоп стронция 90Sr, образующийся при ядерных реакциях, представляет большую опасность для здоровья и жизни.

Реакции катионов второй группы

Реактивы Катионы
Са2+ Ba2+ Sr2+
(NH4 )2СО3, Nа2СО3, К2СО3 СаСО3↓ белый ВаСО3↓ белый SrСО3↓ белый
Na2HP04 СаНРО4↓ белый ВаНРО4↓ белый SrHP04↓ белый
(NH4)2C204 СаС2Н4↓ белый ВаС2О4↓ белый SrC204↓ белый
H2S04 и растворимые сульфаты CaS04↓ белый BaS04↓ белый SrS04↓ белый
К4[Fe(CN)6]+NH4Cl Ca(NH4)2 [Fe(CN)6] ↓

белый

Ba(NH4)2•Fe(CN)6]↓, белый ────
CaS04 BaS04↓ выпадает сразу SrS04

выпадает не сразу

К2Сr207 ВаСrО4↓ желтый ─────
Окрашивание

пламени

Кирпично- красное Желто-зеленое Карминово-красное

Катионы третьей аналитической группы: Al3+, Fe2+, Fe3+, Mn2+, Zn2+, Cr2+

К третьей аналитической группе относят катионы алюминия, железа(II), железа(III), марганца (II), цинка, хрома(III). Они характеризуются большим разнообразием свойств.

Алюминий и цинк проявляют постоянную валентность. Гидроксиды этих элементов и хрома обладают амфотерными свойствами; это свойство используется для отделения алюминия, хрома и цинка от других катионов третьей аналитической группы. Алюминий образует ионы АI3+ и АlО2-, цинк – ионы Zn2+ и ZnO22-, хром ­ионы Сr3+ и СrО2.

Железо, марганец и хром проявляют переменную валентность. Железо образует ионы Fe2+, Fe3+, FeO42-, марганец – ионы Mn2+, Mn3+, Mn4+, MnО42- и MnO4, хром ­ионы Cr3+, CrO42-, Cr2072-.

Изменение валентности этих элементов осуществляется сравнительно легко, поэтому для них характерны окислительно-восстановительные реакции.

Гидроксиды железа и марганца обладают слабоосновными свойствами, растворяются в кислотах, но не растворяются в щелочах. Гидроксиды всех катионов третьей группы не растворимы в воде, но могут переходить в коллоидное состояние.

Соли большинства элементов этой группы образуют окрашенные растворы.

Окраска растворов солей элементов третьей аналитической группы

Ион А13+, Zn2+ Cr3+ СrО42- Сr2О72- Fe3+ Fe2+ Mn2+ MnO4 МnО42-
Окраска раствора Бесцвет-ная Зеленая или фио-летовая Желтая Оранже-вая Красно-

бурая

Бледно-

зеленая

Бледно-розовая Малиново-

фиолетовая

Зеленая

Катионы третьей аналитической группы образуют сульфиды, нерастворимые в воде, но растворимые в кислотах. В отличие от них сульфиды первой и второй группы растворимы в воде, а сульфиды четвертой и пятой группы катионов нерастворимы в кислотах. Поэтому в качестве группового реактива используют сульфид аммония. Другие растворимые сульфиды, так же осаждающие катионы третьей группы, не могут быть использованы как групповой реактив, так как с ними в раствор будут введены катионы первой и второй групп. Присутствие катиона аммония в ходе систематического анализа определяется до введения сульфида аммония, а в дальнейшем катион аммония легко удаляется из раствора в виде аммиака. Катионы третьей группы в зависимости от воздействия на них гидр оксида аммония в присутствии хлорида аммония подразделяют на две подгруппы:

1 подгруппа:

катионы аллюминия, хрома(III), железа (III), осаждаемые водным аммиаком в присутствии хлорида аммония.

2 подгруппа:

катионы железа(II), марганца(II), цинка не осаждаемые таким образом.

Катионы третьей группы, подобно катионам второй группы и магния, образуют труднорастворимые карбонаты и гидрофосфаты. Кроме того, они обладают способностью образовывать комплексные соединения.

Обнаружение и количественное определение катионов третьей группы связано главным образом с анализом почв, микроудобрений, растительного и животного материала, продовольственного сырья и продуктов питания (особенно детских и диетических), так как эти катионы имеют важнейшее биологическое значение.

Алюминий в больших количествах содержится в кислых подзолистых почвах, снижая урожайность многих культур. Соли алюминия применяют для очистки природных вод.

Железо содержится в тканях всех растений и животных. Оно входит в состав гемоглобина крови животных, участвует в синтезе хлорофилла зеленых растений. При недостатке железа в почве у растений развивается хлороз, т.е. отсутствие зеленой окраски из-за пониженного содержания хлорофилла. Избыток железа в почве так же вреден для растений. Многие соли железа (лактат, сульфат, глицерофосфат) применяют в ветеринарии как антианемические средства.

Марганец, цинк, хром – микроэлементы, необходимые для нормального течения обменных процессов у растений и животных. Недостаток марганца в почве способствует развитию у них различных заболеваний; в крови – приводит к возникновению „марганцевого рахита”. Нехватка цинка ведет к нарушению синтеза хлорофилла, витаминов, ауксинов у растений, витаминов и ферментов у животных и человека.

Избыток цинка в почвах, продуктах питания, сырье является токсичным для человека, животных и растений. Согласно гигиеническим нормативам качества и безопасности продовольственных продуктов и сырья предельно допускаемое содержание цинка: в мясе- 70,0 мг/кг., в молоке – 5,0 мг/кг., в яйце-50,0 мг/кг.

Реакции катионов третьей группы

Реактивы Катионы
A13+ Cr3+ Fe3+ Fe2+ Mn2+ Zn2+
(NH4)2S в щелочной среде Аl(ОН)3 Сr(ОН)3 ↓Fе2S3 ↓FeS ↓MnS ↓ZnS
NaOH, КОН, NН4ОH АI(ОН)3 Сr(ОН)3 ↓Fе(ОН)3 ↓Fе(ОН)2 ↓Мn(OН)2 ↓Zn(ОН)2
NaOH, КОН Р-р А102 Р-р Cr02 ↓Fе(ОН)3 ↓Fе(ОН)2 ↓Мn(ОН)2 р-р ZnО22-
NH4Cl в щел. среде ↓Аl(ОН)3 ↓Сr(ОН)3 ↓Fе(ОН)3
Na2HP04 ↓AlP04 ↓CrPО4 ↓FePО4 ↓Fе3(РО4) ↓Мn3(РО4) ↓Zn3(РО4)
K4[Fe(CN)6] ↓Fe4[Fe(CN)6]3 ↓Fe2[Fe(CN)6] ↓Мn2[Fе(CN)6] ↓К2Zn3[Fе(CN)6]2
К3[Fе(СN)6] ↓Fe3[Fe(CN)6] ↓Мn3[Fе(CN)6]2 Zn3[Fе(CN)6]2
KCNS Fе(СNS)3
Алюминон Красный Красный Красный
(NH4)2S208 Cr2072- р-р МnО4 р-р
Дитизон Красный
Cо(NО3)2 CoZn02
Н2О2 в щелочной среде Cr204 р-р Fе(ОН)3

Катионы четвертой аналитической группы: Ag+, Pb2+,Hg22+

Четвертая аналитическая группа объединяет катионы серебра, свинца, и ртути(I). Общим свойством этих катионов является способность осаждаться под действием разбавленной соляной кислоты и ее солей в виде хлоридов-осадков белого цвета. Поэтому соляная кислота является групповым реактивом для катионов этой группы.

Кроме того, катионы четвертой аналитической группы образуют нерастворимые сульфиды черного цвета, которые в отличие от катионов 5 группы, не растворяются в сульфидах натрия, калия, аммония. Мало растворимы в воде также фосфаты и карбонаты катионов четвертой группы. Растворимые соли подвергаются гидролизу и их растворы имеют кислую реакцию. В окислительно-восстановительных реакция катионы четвертой группы выступают в роли окислителей и восстанавливаются до свободных металлов. В водных растворах катионы серебра, свинца и ртути (I) бесцветны.

Соединения ртути (I) содержат группировку -Нg-Hg-, в которой одна из двух связей каждого атома ртути используется на соединения с другим. Соли ртути(I) имеют строение CI-Hg – Hg-Cl или O3N-Hg – Hg-NO3. В этих соединениях на два атома ртути приходится два положительных заряда. Ртуть в этих соединениях является электрохимически одновалентной. При диссоциации этих соединений образуется сложный ион Hg22+.

Соединения катионов четвертой группы имеют важное биологическое значение. Ионы серебра обладают бактерицидным действием. Нитрат серебра применяют в медицине и ветеринарии при эрозиях, язвах, экземах, а также в офтальмологии и стоматологии. Металлическая ртуть и большинство ее соединений очень ядовиты. Наиболее токсичны для животных и человека: хлорид (сулема) и йодид ртути (II) и органические ртутные препараты, применяемые для протравливания семян: гранозан, этилмеркурхлорид, этилмеркурфосфат. Эти соединения нарушают углеводный и кальциевый обмен, функции почек, печени, эндокринных желез, центральной нервной системы вследствие блокады сульфгидрильных групп ферментов. Хлорид ртути (I) или каломель (Hg2CI2) не ядовита и используется в медицине и ветеринарии как слабительное, антисептическое и мочегонное средство.

Соединения свинца также ядовиты. К наиболее токсичным относятся нитрат, ацетат и гидроксохлорид свинца, а так же тетраэтилсвинец. Загрязнение воздуха, почвы и воды соединениями свинца происходит в результате выброса их промышленными предприятиями, выхлопными газами автотранспорта. В соответствии с санитарными нормами содержание свинца в 1 л воды не должно превышать 0.1 мг. В основных сельскохозяйственных продуктах допускается следующее содержание свинца и ртути:

Гигиенические нормативы содержания свинца и ртути в основных продовольственных продуктах, (в мг/кг)

Мясо Молоко Яйца
Свинец 0,5 0,1 0.3
Ртуть 0,03 0,005 0,02

Ацетат свинца и оксид свинца используются в медицине, ветеринарии как вяжущие и противовоспалительные средства в форме примочек, компрессов, мазей и пластырей.

Реакции катионов четвертой группы

Реактивы Катионы
Ag+ Pb2+ Нg22+
HCl и хлориды AgCl↓ – белый,

растворимый в NH4ОH

PbC12↓- белый, растворимый в горячей воде Hg2C12↓ – белый,

чернеющий в NH4ОH

KOH, NaOH Аg2O↓ – бурый Pb(OH)2↓- белый, растворимый в кислотах и избытке щелочей. Hg2О↓- черный
NH40H (избыток) [Аg(NН3)2]+ раствор Рb(ОН)↓-белый (NН2Нg)NО3↓- белый + ↓Hg
K2Cr04 Аg2СrО4↓ кирпично- красный PbCr04↓ – желтый Hg2CrО4↓ – красный
H2S04 ───── PbS04↓ – белый ─────
Na2HP04 Аg3РО4↓ – желтый ───── ─────
НI, (KI) AgI↓- желтый РbI2↓- желтый, растворимый в горячей воде, NaOH, избытке КI Hg2I2↓- грязно-зеленый,

растворимый в избытке КI

Сu металлич. ───── ───── Hg↓

Пятая аналитическая группа катионов: Cu2+, Co2+, Ni2+, Cd2+, Bi3+

Катионы пятой группы образуют нерастворимые в воде сульфиды, гидроксиды и основные соли. Гидроксид аммония, который используется как групповой реактив, образует с катионами пятой группы, ярко окрашенные основные соли, которые, кроме солей висмута, растворимы в избытке аммиака. Образующиеся при этом комплексные соли – аммиакаты, также имеют характерную окраску.

Катионы меди, кадмия и висмута, кроме того, образуют комплексные соединения с цианидами и йодидами. В реакциях окисления-восстановления катионы пятой группы ведут себя как окислители и восстанавливаются до свободных металлов.

В водных растворах почти все катионы пятой группы окрашены.

Окраска растворов солей катионов пятой аналитической группы

Ион Cu2+ Co2+ Ni2+ Cd2+ Bi3+
Окраска

раствора

голубая розовая зеленая бесцветная бесцветная

Объектом качественного анализа на присутствие катионов меди, кобальта, никеля, кадмия и висмута являются удобрения, почвы, растения, биологические жидкости, сельскохозяйственное сырье, продовольственные продукты. Медь входит в состав удобрений и сельскохозяйственных ядов, например: медного купороса, парижской зелени Сu(СН3СОО)23Сu(АsО2)2, бордосской жидкости. Медь необходима для нормальной жизнедеятельности растений и животных, так как входит в состав ферментов, влияет на белковый и углеводный обмен. Сульфат и карбонат меди используют в ветеринарии как антгельминтики. Медь отнесена к токсичным элементам. Предельно допустимое содержание меди в некоторых продуктах питания приведено в таблице N29. Кобальт входит в состав витамина В12. Пониженное содержание этого микроэлемента в почвах, растениях, кормах и пищевых продуктах отрицательно сказывается на росте сельскохозяйственных культур, продуктивности животных и развитии человека. Избыточное содержание кобальта, как и меди, и кадмия считается токсичным.

Гигиенические нормативы содержания меди и кадмия в основных продовольственных продуктах, (в мг/кг)

Мясо Молоко Яйца
Медь 5.0 1.0 3.0
Кадмий 0.05 0.03 0.01

Шестая аналитическая группа катионов: Sn2+, Sn4+, Sb3+, Sb5+, As3+, As5+

Олово, мышьяк и сурьма расположены в 4-5 группах периодической системы и обладают неметаллическими свойствами. В то же время положение этих элементов в 4-5 периодах также отражается на их свойствах и позволяет в некоторых реакциях давать соединения, характерные для металлов. В частности, сурьма, мышьяк, и олово образуют амфотерные гидроксиды. В щелочной среде эти гидроксиды диссоциируют с образованием анионов: AsO33-, АsО43-, SbO43-, SbО33-,SnО33-. В кислой среде образуются катионы : АsЗ+, As5+, Sn2+, Sn4+, Sb3+, Sb5+. Растворы солей этих катионов, образованных сильными кислотами, имеют кислую реакцию.

Мышьяк /III/, сурьма/III/ и олово /III/ в щелочной среде ведут себя как восстановители. Мышьяк /V/, cурьма /V/ в кислой среде проявляют свойства окислителей.

Характерной реакцией для катионов 6 группы является образование нерастворимых в воде сульфидов при взаимодействии с сероводородом в кислой среде. Сульфиды катионов 6 группы растворяются в сульфидах натрия, калия, аммония, образуя сульфосоли (тиосоли). Например:

↓Аs2S3 + ЗNа2S = 2Nа3АsS3 тиомышьяковский натрий.

Сульфосоли по своему составу подобны кислородосодержащим кислотам тех же элементов с той разницей, что роль кислорода здесь играет элемент, ему аналогичный – сера.

Использование сероводорода в качестве группового реактива сопряжено с многочисленными трудностями.

Бессероводородный метод качественного анализа предусматривает осаждение катионов 6 группы (олова и сурьмы) едкими щелочами. При этом образуются соединения нерастворимые в воде, обладающие способностью растворяться в избытке щелочей.

В водных растворах сурьма образует ионы SbЗ+, Sb5+, олово Sn2+, Sn4+, мышьяк ­АsЗ+, ( в кислой среде); арсенит ион AsO33- и арсенат-ион AsO43- (в щелочной среде). Все эти ионы бесцветны. Соединения мышьяка сильно ядовиты. Мышьяк входит в состав сельскохозяйственных ядов: парижской зелени Сu(СН3СОО)23Сu(АsО2)2, арсенита натрия, арсенита и арсената кальция. У животных и человека при попадании больших доз мышьяка внутрь наблюдаются острые отравления, сопровождающиеся сильной болезненностью органов брюшной полости, коликами, рвотой, поносом, слюнотечением, ослаблением сердечной деятельности, резким падением кровяного давления, параличом.

В ветеринарии соединения мышьяка применяют в качестве противопаразитарных средств и веществ, улучшающих обмен (осарсол, новарсенол, натрия арсенат).

Продовольственные продукты и сельскохозяйственное сырье подлежат обязательному анализу на присутствие мышьяка. Предельно допустимое содержание мышьяка составляет: в мясе- 0.1 мг/кг, в молоке- 0.05 мг/кг, в яйце – 0.1 мг/кг.

Биологическая роль сурьмы и олова выяснена недостаточно. В ветеринарии используют сульфиты сурьмы /III/ и /V/ в качестве отхаркивающих средств, арсенат олова как антгельминтик.

А Вам помог наш сайт? Мы будем рады если Вы оставите несколько хороших слов о нас.
Оставить отзыв
Категории
Рекомендации
Подсказка
Нажмите Ctrl + F, чтобы найти фразу в тексте
Помощь проекту
Интересное
А знаете ли вы, что нажав сочетание клавиш Ctrl+F - можно воспользоваться поиском по сайту?
X
Copyrights © 2015: FARMF.RU - тесты, лекции, обзоры
Яндекс.Метрика
Рейтинг@Mail.ru